• Title/Summary/Keyword: Plant Protection Systems

Search Result 131, Processing Time 0.024 seconds

Proposal of A Novel Generator Efficiency Test Using The Shaft-Torque Method (축-토크법을 이용한 새로운 발전기 효율시험 방법의 제안)

  • Kim, Hyun-Han;Ok, Yeon-Ho;Kim, Kwang-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.4
    • /
    • pp.461-468
    • /
    • 2014
  • An efficiency test for generators is generally required in case of construction of a new power plant or replacement of an existing generator. Generally, the efficiency of generator is measured by the input-output ratio under any given condition. Therefore, the best way is to directly measure the value of input and output power of a generator and calculate the efficiency values. However, it is difficult to measure a generator's input values accurately, especially for large systems. So, we are usually measuring the losses of the generator. But for measuring these values, there are several constraints for test such as preparing additional power generator and releasing the protection relay for manual operation of auxiliary equipments. Therefore, this study suggests that a novel generator efficient test method using the shaft-torque method which can be carried out while the generator is normally operating. The reliability of the result value was verified by comparing with the efficiency test results of the conventional retardation method on IEEE Std 115-1995.

Analyses of Failure Causes and an Experimental Study on the Opening Characteristics of Swing Check Valves (스윙형 역지밸브의 고장 원인 분석과 열림 특성에 관한 실험적 연구)

  • Song, Seok-Yoon;Yoo, Seong-Yeon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.8 no.6 s.33
    • /
    • pp.15-25
    • /
    • 2005
  • Check valves playa vital role in the operation and protection of nuclear power plants. Check valves failure in nuclear power plants often lead to a plant transient or trip. The analysis of historical failure data gives information on the populations of various types of check valves, the systems they are installed in, failure modes, effects, methods of detection, and the mechanisms of the failures. A majority of check valve failures are caused by improper application. The experimental apparatus is designed and installed to measure the disc positions with flow velocity, Vopen and Vmin for 3 inch and 6 inch swing check valves. The minimum flow velocity necessary to just open the disc at a full open position is referred to as Vopen, and Vmin is defined as the minimum velocity to fully open the disc and hold it without motion. In the experiments, Vmin is determined as the minimum flow velocity at which the back stop load begins to increase after the disc is fully opened or the oscillation level of disc is reduced below $1^{\circ}$. The results show that the Vmin velocities for 3 inch and 6 inch swing check valves are about 27.3% and 17.5% higher than the Vopen velocities, respectively.

SEISMIC ISOLATION OF LEAD-COOLED REACTORS: THE EUROPEAN PROJECT SILER

  • Forni, Massimo;Poggianti, Alessandro;Scipinotti, Riccardo;Dusi, Alberto;Manzoni, Elena
    • Nuclear Engineering and Technology
    • /
    • v.46 no.5
    • /
    • pp.595-604
    • /
    • 2014
  • SILER (Seismic-Initiated event risk mitigation in LEad-cooled Reactors) is a Collaborative Project, partially funded by the European Commission in the $7^{th}$ Framework Programme, aimed at studying the risk associated to seismic-initiated events in Generation IV Heavy Liquid Metal reactors, and developing adequate protection measures. The project started in October 2011, and will run for a duration of three years. The attention of SILER is focused on the evaluation of the effects of earthquakes, with particular regards to beyond-design seismic events, and to the identification of mitigation strategies, acting both on structures and components design. Special efforts are devoted to the development of seismic isolation devices and related interface components. Two reference designs, at the state of development available at the beginning of the project and coming from the $6^{th}$ Framework Programme, have been considered: ELSY (European Lead Fast Reactor) for the Lead Fast Reactors (LFR), and MYRRHA (Multi-purpose hYbrid Research Reactor for High-tech Applications) for the Accelerator-Driven Systems (ADS). This paper describes the main activities and results obtained so far, paying particular attention to the development of seismic isolators, and the interface components which must be installed between the isolated reactor building and the non-isolated parts of the plant, such as the pipe expansion joints and the joint-cover of the seismic gap.

Application of Electromagnetic Fields to Improve the Removal Rate of Radioactive Corrosion Products

  • Kong, Tae-Young;Lee, Kun-Jai;Song, Min-Chul
    • Nuclear Engineering and Technology
    • /
    • v.36 no.6
    • /
    • pp.549-558
    • /
    • 2004
  • TTo comply with increasingly strict regulations for protection against radiation exposure, many nuclear power plants have been working ceaselessly to reduce and control both the radiation sources within power plants and the radiation exposure experienced by operational and maintenance personnel. Many research studies have shown that deposits of irradiated corrosion products on the surfaces of coolant systems are the main cause of occupational radiation exposure in nuclear power plant. These corrosion product deposits on the fuel-clad surface are also known to be main factors in the onset of axial offset anomaly (AOA). Hence, there is a great deal of ongoing research on water chermistry and corrosion processes. In this study, a magnetic filter with permanent magnets was devised to remove the corrosion products in the coolant stream by taking advantage of the magnetic properties of the corrosion products demonstrated a removal efficiency of over 90% for particles above 5${\mu}m$. This finding led to the construction of an electromagnetic device that causes the metallic particulates to flocculate into larger aggregates of about 5${\mu}m$ in diameter by using a novel application of electromagnetic flocculation on radioactive corrosion products.

Investigation of Burst Pressures in PWR Primary Pressure Boundary Components

  • Namgung, Ihn;Giang, Nguyen Hoang
    • Nuclear Engineering and Technology
    • /
    • v.48 no.1
    • /
    • pp.236-245
    • /
    • 2016
  • In a reactor coolant system of a nuclear power plant (NPP), an overpressure protection system keeps pressure in the loop within 110% of design pressure. However if the system does not work properly, pressure in the loop could elevate hugely in a short time. It would be seriously disastrous if a weak point in the pressure boundary component bursts and releases radioactive material within the containment; and it may lead to a leak outside the containment. In this study, a gross deformation that leads to a burst of pressure boundary components was investigated. Major components in the primary pressure boundary that is structurally important were selected based on structural mechanics, then, they were used to study the burst pressure of components by finite element method (FEM) analysis and by number of closed forms of theoretical relations. The burst pressure was also used as a metric of design optimization. It revealed which component was the weakest and which component had the highest margin to bursting failure. This information is valuable in severe accident progression prediction. The burst pressures of APR-1400, AP1000 and VVER-1000 reactor coolant systems were evaluated and compared to give relative margins of safety.

A numerical approach for assessing internal pressure capacity at liner failure in the expanded free-field of the prestressed concrete containment vessel

  • Woo-Min Cho;Seong-Kug Ha;SaeHanSol Kang;Yoon-Suk Chang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3677-3691
    • /
    • 2023
  • Since containment building is the major shielding structure to ensure safety of nuclear power plant, the structural behavior and ultimate pressure capacity of containments must be studied in depth. This paper addresses ambiguous issue of determining free-field position for liner failure by suggesting an expanded free-field region and comparing internal pressure capacities obtained by test data, conservative assumption and suggested free-field region. For this purpose, a practical approach to determine the free-field position for the evaluation of liner tearing is carried out. The maximum principal strain histories versus internal pressure capacities among different free-field positions at various azimuths and elevations are compared with those at the equipment hatch as a conservative assumption. The comparison shows that there are considerable differences in the internal pressure capacity at liner failure within the expanded free-field region compared to the vicinity of the equipment hatch. Additionally, this study proposes an approximate correlation with conservative factors by considering the expanded free-field ranges and material characteristics to determine realistic failure criteria for liner. The applicability of the proposed correlation is demonstrated by comparing the internal pressure capacities of full-scale containment buildings following liner failure criteria according to RG 1.216 and an approximate correlation.

Crop Leaf Disease Identification Using Deep Transfer Learning

  • Changjian Zhou;Yutong Zhang;Wenzhong Zhao
    • Journal of Information Processing Systems
    • /
    • v.20 no.2
    • /
    • pp.149-158
    • /
    • 2024
  • Traditional manual identification of crop leaf diseases is challenging. Owing to the limitations in manpower and resources, it is challenging to explore crop diseases on a large scale. The emergence of artificial intelligence technologies, particularly the extensive application of deep learning technologies, is expected to overcome these challenges and greatly improve the accuracy and efficiency of crop disease identification. Crop leaf disease identification models have been designed and trained using large-scale training data, enabling them to predict different categories of diseases from unlabeled crop leaves. However, these models, which possess strong feature representation capabilities, require substantial training data, and there is often a shortage of such datasets in practical farming scenarios. To address this issue and improve the feature learning abilities of models, this study proposes a deep transfer learning adaptation strategy. The novel proposed method aims to transfer the weights and parameters from pre-trained models in similar large-scale training datasets, such as ImageNet. ImageNet pre-trained weights are adopted and fine-tuned with the features of crop leaf diseases to improve prediction ability. In this study, we collected 16,060 crop leaf disease images, spanning 12 categories, for training. The experimental results demonstrate that an impressive accuracy of 98% is achieved using the proposed method on the transferred ResNet-50 model, thereby confirming the effectiveness of our transfer learning approach.

Feasibility Study of Underground LNG Storage System in Rock Cavern (LNG 지하공동 비축시스템의 타당성분석)

  • Chung, So-Keul;Han, Kong-Chang;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.16 no.4 s.63
    • /
    • pp.296-306
    • /
    • 2006
  • It is difficult to solve problems regarding the adjustment on demand and supply of LNG due to seasonal variations of domestic demand of LNG, a discordance among import pattern and limits of storage facilities and so on. Also, there may be instability in LNG supply due to chances of accidents at LNG producing areas. Therefore, it is very important to secure large LNG storage facilities and to stabilize LNG supply management on a long term basis. The objective of this study is to examine the real-scale applicability of a lined underground rock storage system, which have been verified by a successful operation of the Daejeon LNG pilot plant. The new technology has many advantages of better economy, safety and environment protection, for above-ground and in-ground storage systems. The results of this study may promote the first ever real scale underground LNG storage system in a rock cavern.

Radiation Damage by the Pool Fire of LNG Storage Tank (LNG 저장 탱크의 Pool Fire에 의한 복사열 피해)

  • Sohn Jung-Hwan;Hahn Yoon-Bong
    • Journal of the Korean Institute of Gas
    • /
    • v.2 no.1
    • /
    • pp.14-22
    • /
    • 1998
  • In this work, in order to quantitatively predict the radiation flux and propose an idea about how to reduce the radiation damage, the radiation flux caused by pool fire of an LNG storage tank has been calculated using the RISC (Risk and Industrial Safety Consultant) proposed model under various conditions. Model predictions showed that the most important parameter affecting the radiation flux by the LNG pool fire is the wind speed. The extent of radiation damage to a target from fire flame was more significant with variation of wind speed at a low wind speed than with that at a high wind speed. It was found that the radiation damage by the former is substantially reduced with planting windbreak system around the plant. Since the windbreak is most economical than any other method, it is strongly suggested to plant a tree belt in the factory surroundings, especially near by the area of gas storage facilities, linking with water cooling and fire protection systems.

  • PDF

A Study of Optimal-CSOs by Continuous Rainfall/Runoff Simulation Techniques (연속 강우-유출 모의기법을 이용한 최적 CSOs 산정에 관한 연구)

  • Jo, Deok Jun;Kim, Myoung Su;Lee, Jung Ho;Kim, Joong Hoon
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.6
    • /
    • pp.1068-1074
    • /
    • 2006
  • For receiving water quality protection a control systems of urban drainage for CSOs reduction is needed. Examples in combined sewer systems include downstream storage facilities that detain runoff during periods of high flow and allow the detained water to be conveyed by an interceptor sewer to a centralized treatment plant during periods of low flow. The design of such facilities as storm-water detention storage is highly dependant on the temporal variability of storage capacity available as well as the infiltration capacity of soil and recovery of depression storage. For the continuous long-term analysis of urban drainage system this study used analytical probabilistic model based on derived probability distribution theory. As an alternative to the modeling of urban drainage system for planning or screening level analysis of runoff control alternatives, this model has evolved that offers much ease and flexibility in terms of computation while considering long-term meteorology. This study presented rainfall and runoff characteristics of the subject area using analytical probabilistic model. Runoff characteristics manifested the unique characteristics of the subject area with the infiltration capacity of soil and recovery of depression storage and was examined appropriately by sensitivity analysis. This study presented the average annual CSOs, number of CSOs and event mean CSOs for the decision of storage volume.