• Title/Summary/Keyword: Plant O&M

Search Result 859, Processing Time 0.027 seconds

Experimental Study on Heat Losses from Receiver of Solar Thermal Power (태양열발전용 흡수기 설게 및 열손실 특성실험)

  • Kim, Jong-Kyu;Kang, Yong-Heack;Kim, Jin-Soo;Lee, Sang-Nam;Yu, Chang-Kyun;Yun, Hwan-Ki
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.672-675
    • /
    • 2007
  • Experimental data are presented which describe heat losses of cavity type receiver in wind tunnel. Experiments are conducted at various conditions such as the heater temperature in cavity changes from 300, 400, and 500 oC, wind speed in tunnel from 2 to 8 m/s, and four different tilt angle of 30, 50, 70, 90o. The power consumption including temperature, voltage and current for each experimental conditions are measured and stored in data logger at everyone second interval. The experimental results show that heat losses increase with increasing wind speed and with tilt angle. However, heat losses for the tilt angle of 70 and 90o is almost same at each heater temperature. In addition, the effects of natural convection in combined convection heat losses vary in according to the tilt angle.

  • PDF

Lepidopterous Insect Pests on Soy bean (콩의 나방류(아류)해충에 관한 조사)

  • Park K. T.;Hwang C. Y.;Choi K. M.
    • Korean journal of applied entomology
    • /
    • v.17 no.1 s.34
    • /
    • pp.1-5
    • /
    • 1978
  • The list of lepidopterous pests on soybean represented in this paper is a result which has been carried out for the survey of insect pests of main crops under the Strengthening Plant Protection Research and Training Project, FAO/UNDP. Forty eight lepidopterous pests which collected on soybean during this period are identified and the general biology of major pests is summarized. Most of materials were collected in the stage of larva, which was injurious stage, on the injurious parts of soybean and reared in the laboratory.

  • PDF

Identification of Novel Saringosteryl Glucoside in Phaseolus vulgaris Seed (강낭콩 미숙종자내 신규 Saringosteryl Glucoside의 동정)

  • 김성기
    • Journal of Plant Biology
    • /
    • v.37 no.4
    • /
    • pp.441-444
    • /
    • 1994
  • From immature seed of Phaseolus vulgaris L., a novel phytosteryl glucoside was isolated. Strong ion peaks at m/z 613 $[M+Na}^{+},\;696\;[M+Matrix]^{+}$ in positive F AB- MS and at m/z 589 $[M-1]^{-}$ in negative F AB- MS indicated the molecular weight of the compound is 590. Four hundred MHz $^IH-NMR$ analysis revealed that the compound canys a 24-hydroxy-24-vinyl-cholesterol (saringosterol) as an aglycone and a ${\beta}-D-glucopyranose$. Four hundred MHz $^IH-NMR$ analysis of the acetate derivate of the compound revealed that hydroxyls at C-1' in glucose moeity and at C-3 in aglycone have been condensed. Therefore, the phytosteryl glucoside was characterized to be $3-0-{\beta}-D-glucopyranosyl-24-hydroxy-24-vinyl-cholesterol$ (saringosteryl glucoside). This is the first demonstration for the presence of saringosterol in higher plants. Also this is the first identification of saringosteryl glucoside in natural materials.erials.

  • PDF

A Study on Pipe Model Registration for Augmented Reality Based O&M Environment Improving (증강현실 기반의 O&M 환경 개선을 위한 배관 모델 정합에 관한 연구)

  • Lee, Won-Hyuk;Lee, Kyung-Ho;Lee, Jae-Joon;Nam, Byeong-Wook
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.3
    • /
    • pp.191-197
    • /
    • 2019
  • As the shipbuilding and offshore plant industries grow larger and more complex, their maintenance and inspection systems become more important. Recently, maintenance and inspection systems based on augmented reality have been attracting much attention for improving worker's understanding of work and efficiency, but it is often difficult to work with because accurate matching between the augmented model and reality information is not. To solve this problem, marker based AR technology is used to attach a specific image to the model. However, the markers get damaged due to the characteristic of the shipbuilding and offshore plant industry, and the camera needs to be able to detect the entire marker clearly, and thus requires sufficient space to exist between the operator. In order to overcome the limitations of the existing AR system, in this study, a markerless AR was adopted to accurately recognize the actual model of the pipe system that occupies the most processes in the shipbuilding and offshore plant industries. The matching methodology. Through this system, it is expected that the twist phenomenon of the augmented model according to the attitude of the real worker and the limited environment can be improved.

Enzymatic Formation of Guaiacylglycerol 8-O-4'-(Coniferyl Alcohol) Ether from Coniferyl Alcohol with Enzyme Preparations of Eucommia ulmoides

  • Alam, Md. Shameul;Katayama, Takeshi;Suzuki, Toshisada;Sultana, Deeder;Sultana, Saima;Hossain, Md. Daud
    • Journal of Crop Science and Biotechnology
    • /
    • v.11 no.1
    • /
    • pp.45-50
    • /
    • 2008
  • Lignans and neolignans are optically active plant secondary metabolites. Research on biosynthesis of lignans has already been advanced especially for the formation of (+) pinoresinol but information on the biosynthesis of 8-O-4'- neolignans is still limited. Moreover, the chemical structure(position of substituents on aromatic rings) and stereochemistry of 8-O-4' neolignans is not clear. Katayama and Kado discovered that incubation of cell-free extracts from E. ulmoides with coniferyl alcohol in the presence of hydrogen peroxide gave (+)-erythro- and (-)-threo- guaiacylglycerol 8-O-4'-(coniferyl alcohol) ether (GGCE)(diastereomeric ratio, 3:2) which is the first report on enzymatic formation of optically active -8-O-4' neolignans from an achiral monolignol. In this aspect, enzymatic formation of guaiacyl 8-O-4' neolignan is noteworthy to clarify its stereochemistry from incubation of coniferyl alcohol with enzyme prepared from Eucommia ulmoides. In this experiment, soluble and insoluble enzymes prepared from E. ulmoides were incubated with 30 mM coniferyl alcohol(CA) for 60 min. The enzyme catalyzed GGCE, dehydrodiconiferyl alcohol(DHCA), and pinoresinol identified by reversed phase HPLC. Consequently, diastereomeric compositions of GGCE were determined as erythro and threo isomer. Enantiomeric composition was determined by the chiral column HPLC. Both enzyme preparations enantioselectively formed (-)-erythro, (+)-erythro and (+)-threo, (-)-threo-GGCEs respectively.

  • PDF

Determination of Optimum Operational Parameters on Early Warning Device for Early Detection of Taste and Odor in Drinking Water Supplies (상수원수 내 이취미 조기감지를 위한 조기경보장치의 최적운전인자 도출)

  • Kim, Young-Il;Bae, Byung-Uk;Ju, Dae-Sung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.6
    • /
    • pp.849-855
    • /
    • 2006
  • Taste and odor (T&O) problems in drinking water supplies caused by eutrophication have become increasingly important because aesthetic qualities are the primary measures by which consumers estimate the quality of their drinking water. In order to overcome T&O problem, it is necessary to early detection method for T&O compounds before these compounds enter to water treatment plant. In this background, a early waming device for T&O compounds was developed and its performance tested under different operating condition. According to the experimental results on the adsorption efficiency of T&O compounds, when the raw water flowrate was 5 mL/min, the optimum stripping time and air flowrate were 5 hrs and 0.5 L/min, respectively. Comparison of activated carbon showed that foreign activated carbon was better than domestic activated carbon in terms of adsorption efficiency.

Measurement Emission of Greenhouse Gases from Composting Process for Pig Slurry (돈 슬러리 발효증발 퇴비화 시스템의 온실가스 배출량 측정)

  • 박치호;윤태한;감재환
    • Journal of Animal Environmental Science
    • /
    • v.7 no.2
    • /
    • pp.111-118
    • /
    • 2001
  • This study was performed for measuring the emission of greenhouse gases, $CH_4,\;N_2O$, from the composting process for pig slurry. For the experiment the benchscale pilot plant was designed by 1$m^3$ volume reactor with a closed type and operated; sawdust 142kg filled before input slurry, slurry about 10~20l inputed per day (total 380l), air supplied 5l/min for 24 hours, mixing time 10 min./day and 1 time a day. From the total experiment period(30days), the amount of VS degradation and emission $CH_4$, $N_2O$ were 10.9kg-VS and 1,582.4g-$CH_4$, 68.1g-$N_2O$ respectively. Based on VS inputed the emission of $CH_4$, $N_2O$ were 15.3(g-$CH_4$/kg-V $S_{input}$), 0.7(g-$N_2O$ /kg-V $S_{input}$), and based on VS degradated were 145.2(g-$CH_4$/kg-V $S_{removed}$), 6.2(g-$N_2O$ /kg-V $S_{removed}$).

  • PDF

Ammonium Excess Promotes Proline Synthesis but Inhibits Glutathione Synthesis in Oilseed Rape (Brassica napus L.)

  • Hyunjae Lee;Seon-Hye Baek;Tae-Hwan Kim
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.43 no.2
    • /
    • pp.109-115
    • /
    • 2023
  • Ammonium (NH4+) serves as a nitrogen source, but its elevated levels can hinder plant growth and production. Excess NH4+ with α-ketoglutarate is assimilated into glutamate, a precursor of proline and glutathione (GSH). This study aimed to investigate the effects of excessive NH4+ on the regulation of proline and GSH synthesis. Detached leaves from oilseed rape (Brassica napus L.) were fed with 0, 50, 100, 500, and 1000 mM NH4Cl for 16 h. As the NH4+ concentrations increased, the leaves exhibited progressive wilting and yellowing. Furthermore, total carotenoid and chlorophyll concentrations declined in response to all NH4+ treatments, with the lowest levels observed in 1000 mM NH4+ treatment. Hydrogen peroxide (H2O2) concentration showed a minor increase at low NH4+ concentration (50 and 100 mM) treatments but a significant increase at high NH4+ (500 and 1000 mM), which was consistent with the localization of H2O2. Amino acid concentrations increased with increasing in NH4+ concentration, while the protein concentration displayed the opposite trend. Proline and cysteine concentrations exhibited a gradual increase in response to increasing NH4+ concentrations. However, GSH concentrations rose only in the 50 mM NH4+ treatment and decreased in the 500 and 1000 mM NH4+ treatments. These results indicate that excessive NH4+ is primarily assimilated into proline, while GSH synthesis is adversely affected.

Tomato Yellow Leaf Curl China Virus Impairs Photosynthesis in the Infected Nicotiana benthamiana with βC1 as an Aggravating Factor

  • Farooq, Tahir;Liu, Dandan;Zhou, Xueping;Yang, Qiuying
    • The Plant Pathology Journal
    • /
    • v.35 no.5
    • /
    • pp.521-529
    • /
    • 2019
  • Tomato yellow leaf curl China virus is a species of the widespread geminiviruses. The infection of Nicotiana benthamiana by Tomato yellow leaf curl China virus (TYLCCNV) causes a reduction in photosynthetic activity, which is part of the viral symptoms. ${\beta}C1$ is a viral factor encoded by the betasatellite DNA ($DNA{\beta}$) accompanying TYLCCNV. It is a major viral pathogenicity factor of TYLCCNV. To elucidate the effect of ${\beta}C1$ on plants' photosynthesis, we measured the relative chlorophyll (Chl) content and Chl fluorescence in TY-LCCNV-infected and ${\beta}C1$ transgenic N. benthamiana plants. The results showed that Chl content is reduced in TYLCCNV A-infected, TYLCCNV A plus $DNA{\beta}$ (TYLCCNV A + ${\beta}$)-infected and ${\beta}C1$ transgenic plants. Further, changes in Chl fluorescence parameters, such as electron transport rate, $F_v/F_m$, NPQ, and qP, revealed that photosynthetic efficiency is compromised in the aforementioned N. benthamiana plants. The presense of ${\beta}C1$ aggravated the decrease of Chl content and photosynthetic efficiency during viral infection. Additionally, the real-time quantitative PCR analysis of oxygen evolving complex genes in photosystem II, such as PsbO, PsbP, PsbQ, and PsbR, showed a significant reduction of the relative expression of these genes at the late stage of TYLCCNV A + ${\beta}$ infection and at the vegetative stage of ${\beta}C1$ transgenic N. benthamiana plants. In summary, this study revealed the pathogenicity of TYLCCNV in photosynthesis and disclosed the effect of ${\beta}C1$ in exacerbating the damage in photosynthesis efficiency by TYLCCNV infection.

Copper and Zinc Uptake Capacity of a Sorghum-Sudangrass Hybrid Selected for in situ Phytoremediation of Soils Polluted by Heavy Metals (식물정화를 위한 중금속 내성 작물의 선발과 수수-수단그라스 교잡종의 구리와 아연 흡수능력)

  • Oh, Soon-Ja;Koh, Seok-Chan
    • Journal of Environmental Science International
    • /
    • v.24 no.11
    • /
    • pp.1501-1511
    • /
    • 2015
  • As essential trace elements, copper and zinc play important roles in many physiological events in plants. In excess, however, these elements can limit plant growth. This study selected a heavy metal-tolerant plant by analyzing seed germination and biomass of alfalfa (Medicago sativa), canola (Brassica campestris subsp. napus var. nippo-oleifera), Chinese corn (Setaria italica), and a sorghum-sudangrass hybrid (Sorghum bicolor ${\times}$ S. sudanense), and determined heavy metal uptake capacity by analyzing biomass, chlorophyll a fluorescence, and heavy metal contents under high external copper or zinc levels. The seed germination rate and biomass of the sorghum-sudangrass hybrid were higher under copper or zinc stress compared to the other three plants. The plant biomass and photosynthetic pigment contents of the sorghum-sudangrass hybrid seedlings were less vulnerable under low levels of heavy metals (${\leq}50ppm$ copper or ${\leq}400ppm$ zinc). The maximum quantum yield of PSII ($F_v/F_m$) and the maximum primary yield of PSII ($F_v/F_o$) decreased with increasing copper or zinc levels. Under high copper levels, the decline in $F_v/F_m$ was caused only by the decline in $F_m$, and was accompanied by an increase in non-photochemical quenching (NPQ). The $F_v/F_m$ declined under high levels of zinc due to both a decrease in the maximum fluorescence ($F_m$) and an increase in the initial fluorescence ($F_o$), and this was accompanied by a marked decrease in photochemical quenching (qP), but not by an increase in NPQ. Accumulations of copper and zinc were found in both aboveand below-ground parts of plants, but were greater in the below-ground parts. The uptake capacity of the sorghum-sudangrass hybrid for copper and zinc reached 4459.1 mg/kg under 400 ppm copper and 9028.5 mg/kg under 1600 ppm zinc. Our results indicate that the sorghum-sudangrass hybrid contributes to the in situ phytoremediation of copper or zinc polluted soils due to its high biomass yield.