• Title/Summary/Keyword: Plant Maintenance

Search Result 920, Processing Time 0.036 seconds

DISTRIBUTED HMI SYSTEM FOR MANAGING ALL SPAN OF PLANT CONTROL AND MAINTENANCE

  • Yoshikawa, Hidekazu
    • Nuclear Engineering and Technology
    • /
    • v.41 no.3
    • /
    • pp.237-246
    • /
    • 2009
  • Digitalization of not only non-safety but also safety-grade I &C systems with full computerized Main Control Room (MCR) is the recent trend of I&C systems of nuclear power plants (NPP) around the world, while plant maintenance has been shifting from traditional time based maintenance to condition based maintenance. In order to cope with the new trend of operation and maintenance in NPP, a concept of online distributed diagnostic system for both plant operation and maintenance has been proposed in order to further improve both the plant efficiency and the work environment of plant operation staff members by organizational learning. In this respect, the research subjects of human machine interface (HMI) for the online distributed diagnostic system are also discussed for supporting the plant personnel at both MCR and local working places in the plant by the application of advanced ICT (Information and Communication Technologies).

Development of an Integrated Management System for Maintenance Parameters and Rotary Machine of Hydro-power Plant (수력발전소 정비변수 및 회전체 통합관리 시스템 개발)

  • Shin, Sung-Hwan;Park, Jin-Ho;Yoon, Doo-Byung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.263-269
    • /
    • 2012
  • Condition-based maintenance (CBM) has been used as a useful concept for optimizing maintenance plan and decreasing maintenance cost in several kinds of plant sites. This study introduced an example that developed an integrated management system for maintenance parameters and hydraulic turbine of hydro-power plant in order to improve its maintenance system as applying CBM techinique. The integrated management system consists of three parts. One is a hardware part including PDA inspection system and several kind of precision measuring instruments. Another is a vibration monitoring system on hydraulic turbine. The other is a software part that takes charge of making hierarchy tree of maintenance parameters and their inspection route, managing accumulated database, assessing health condition of components, and supporting interface with other enterprise management system. The system has been installed at Chuncheon Hydro-power plant for test and demonstration. It is expected that the system can contribute database construction for diagnostics and prognostics on facility health condition and systematic accumulation of know-how on operation and maintenance of plant.

  • PDF

Development of an Integrated Management System for Maintenance Parameters and Rotary Machine of Hydro-power Plant (수력발전소 정비변수 및 회전체 통합관리시스템 개발)

  • Shin, Sung-Hwan;Park, Jin-Ho;Yoon, Doo-Byung;Son, Ki-Sung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.6
    • /
    • pp.574-581
    • /
    • 2012
  • Condition-based maintenance(CBM) has been used as a useful concept for optimizing maintenance plan and decreasing maintenance cost in several kinds of plant sites. This study introduced an example that developed an integrated management system for maintenance parameters and hydraulic turbine of hydro-power plant in order to improve its maintenance strategy as applying CBM techinique. The integrated management system consists of three parts. One is a hardware part including PDA inspection system and several kind of precision measuring instruments. Another is a vibration monitoring system on hydraulic turbine. The other is a software part that takes charge of making hierarchy tree of maintenance parameters and their inspection route, managing accumulated database, assessing health condition of components, and supporting interface with other enterprise management system. The system has been installed at Chuncheon hydro-power plant for test and demonstration. It is expected that the system can contribute database construction for diagnostics and prognostics on facility health condition and systematic accumulation of know-how on operation and maintenance of plant.

Development of a Knowledge-based Information Management System for Plant Maintenance (설비 관리를 위한 지식기반 정보관리 시스템의 개발)

  • Yim, Hyung-Sang;Park, Young-Jae;Lee, Sang-Min;Choi, Jae-Boong;Kim, Young-Jin;Roh, Eun-Chul;Lee, Byung-Ine
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.149-156
    • /
    • 2003
  • Recently, the importance of plant maintenance(PM) was highly raised to provide efficient plant operation which highly affects the productivity. For this reason, a number of engineering methodologies, such as riskbased inspection(RBI), fitness for service guidelines(FFS), plant lifecycle management(PLM), have been applied to improve the plant operation efficiency. Also, a network-based business operation system, which is called ERP(Enterprise Resource Planning), has been introduced in the field of plant maintenance. However, there was no attempt to connect engineering methodologies to the ERP PM system. In this paper, a knowledge-based information system for the plant operation of steel making company has been proposed. This system, which is named as K-VRS(Knowledge-based Virtual Reality System), provides a connection between ERP plant maintenance module and knowledge-based engineering methodologies, and thus, enables network-based highly effective plant maintenance process. The developed system is expected to play a great role for more efficient and safer plant maintenance.

  • PDF

Development of a Knowledge-Based Information Management System for Plant Maintenance (설비 관리를 위한 지식기반 정보관리 시스템의 개발)

  • Park, Young-Jae;Lee, Sang-Min;Yim, Hyung-Sang;Choi, Jae-Boong;Kim, Young-Jin;Roh, Eun-Chul;Lee, Byung-Ine
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.11
    • /
    • pp.1933-1940
    • /
    • 2003
  • Recently, the importance of plant maintenance(PM) was highly raised to provide efficient plant operation which highly affects the productivity. For this reason, a number of engineering methodologies, such as risk-based inspection(RBI), fitness for service guidelines(FFS), plant lifecycle management(PLM), have been applied to improve the plant operation efficiency. Also, a network-based business operation system, which is called ERP(Enterprise Resource Planning), has been introduced in the field of plant maintenance. However, there was no attempt to connect engineering methodologies to the ERP PM system. In this paper, a knowledge-based information system for the plant operation of steel making company has been proposed. This system which is named as K-VRS(Knowledge-based Virtual Reality System), provides a connection between ERP plant maintenance module and knowledge-based engineering methodologies, and thus, enables network-based highly effective plant maintenance process. The developed system is expected to play a great role for more efficient and safer plant maintenance.

Risk Monitor Development for On-Line Maintenance (가동중 정비를 위한 Risk Monitor 개발)

  • 김길유;한상훈;김태운
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.4
    • /
    • pp.21-26
    • /
    • 1997
  • Korea Atomic Energy Research Institute (KAERI) developed a risk monitor called Risk Monster which supports for plant operators and maintenance schedulers to monitor plant risk and to avoid high peak risk by rearranging maintenance work schedule. Risk Monster can update the plant risk continuously according to the change of system/component configuration since Risk Monster reevaluates the plant risk based on the Probabilistic Safety Assessment (PSA) results. A brief description of Risk Monster is provided. The PSA model of UCN 3, 4 nuclear power plant was converted by KAERI to Risk Monster model. Using this Risk Monster model, a feasibility study of the on-line maintenance of an Essential Service Water (ESW) pump was performed. On-line maintenance of one ESW pump has been shown to be acceptably safe, and has economic benefits. In addition, it is not a violation of technical specification to continue plant operation with an out-of-service ESW pump.

  • PDF

Design of a Plant Life Cycle Data Management System for Plant Operation and Maintenance (플랜트 설계 및 운영 데이터 통합관리 시스템 설계)

  • Lee, Jae Hyun;Suh, Hyo Won
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.42 no.3
    • /
    • pp.241-248
    • /
    • 2016
  • Plant life cycle consists of design, construction, certification, operation, and maintenance phases, and various and enormous plant life cycle data is involved in each phase. Plant life cycle data should be linked with each other based on its proper relationships, so that plant operators can access necessary plant data during their regular operations and maintenance works. Currently, the relationships of plant life cycle data may not be defined explicitly, or they are scattered over several plant information systems. This paper proposes high level design of a plant life cycle data management system based on pre-defined plant life cycle database design. ISO-15926 standard is adapted for the database design. User-interface designs of the plant life cycle data management system are explained based on analysis of plant owners' requirements. A conceptual design of the database is also described with the entity-relationship diagram.

The consideration of the Isolation Mode for Digital Governor System (Digital Governor의 Isolation Mode에 대한 고찰)

  • Ok, Yeon-Ho;Lee, Yong-Gil;Han, Cheol-Hui;Kwak, Won-Ku;Cho, Seung-Gi
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.776-777
    • /
    • 2011
  • 조속기는 수차발전기의 핵심을 담당하는 두뇌라고 말할 수 있으며, 전력계통의 부하(주파수)가 변할 경우 수차발전기의 회전속도를 정격으로 유지시켜 양질의 전기를 생산하도록 항시 조정되는 역할을 한다. 최근 조속기는 디지털화되어 최적제어 감시 및 보호기능을 수행하고 있으나 문제점도 하나둘씩 나타나고 있는 실정이다. 본 논문에서는 디지털 가버너의 Isolation Mode에 대한 설명과 사고사례를 통해 디지털가버너 운영 시 문제점을 분석, 검토하여 보완하고자 하였으며, 이를 통해 안정적으로 전력공급을 주요 목적으로 하였다.

  • PDF

Development of RCM Framework for Implementation on Safety Systems of Nuclear Power Plant

  • Kim, Tae-Woon;Brijendra Singh;Park, Chang K.;Chang, Tae-Whee;Song, Jin-Bae
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.631-636
    • /
    • 1996
  • This paper presents a Reliability Centered Maintenance (RCM) framework for implementation on safety system of nuclear power plant (NPP). RCM is a systematic methodology to optimize the surveillance and maintenance tasks for critical components which provides efficiently and effectively reliability of system and safety of plant. Maintenance of the safety systems is essential for its safe and reliable operation. Reliability Centered Maintenance at NPP is the program which assure that plant system remains within original design criteria and that is not adversely affected during the plant life time. Aim of this paper is to provide the RCM framework to implement it on safety systems. RCM framework is described in four major steps.

  • PDF

Selection of Maintenance Interval Based on RCM for a Coal Handling Equipment (신뢰도중심정비에 의한 석탄취급설비 정비주기선정)

  • Cho, Il-Yong;Moon, Seung-Jae
    • Plant Journal
    • /
    • v.9 no.4
    • /
    • pp.37-42
    • /
    • 2013
  • Power plants have many components and equipment. It is difficult for operators to know the each equipment fails or what equipment fails. It is important to prevent failure in advance. Recently, outlook of maintenance tasks is changing from time based maintenance to condition based maintenance. In this study, we selected RCM-based maintenance intervals for coal handling equipment at coal power plant. For RCM analysis, we have made great progress in a maintenance task and interval. If we apply RCM analysis to the whole plant system, we can expect qualitative improvement and efficient operation of power plant system.

  • PDF