• Title/Summary/Keyword: Plant Equipment

Search Result 929, Processing Time 0.041 seconds

A Case Study of Simulation-based Feasibility Analysis of Replacement of Inspection Equipment for Switchboards (시뮬레이션 기반 배전반 검사장비 교체의 타당성 분석에 관한 사례연구)

  • Han, Young Jin;Yi, Do Yoon;Hong, Jun Pyo;Joo, Sung Ho;Kim, Gi Min;Park, Jaehun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.45 no.1
    • /
    • pp.83-90
    • /
    • 2022
  • This study deals with replacement analysis of deteriorated equipment for improving productivity of production system. Frequent breakdown of the deteriorated equipment causes a situation that reduces productivity such as low product quality, process delay, and repair cost. However, the replacement of new equipment will be required a high initial investment cost, so it is important to analysis the economic feasibility. Therefore, we analyze the effect of the production system due to the aging effect of the equipment and the feasibility of equipment replacement based on the economic analysis. The process flow, working time, logistics movement, etc. are analyzed in order to build the simulation modeling for a ship and land switchboard production system. Using numerical examples, the economic feasibility analysis of equipment replacement through replacement of existing deteriorated equipment and additional arrangement of new facilities is performed.

Development of Power Performance Evaluation System using Modeling Technology (설비 모델링 기술을 이용한 발전성능평가 시스템 구성방안 연구)

  • Lee, Ji-Hoon;Lee, In-tae;Jung, Nam-Joon;Bae, Jung-Seok;An, Young-Mo
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.4 no.2
    • /
    • pp.81-88
    • /
    • 2018
  • Performance evaluation of a plant to efficiently manage and maintain the performance of the plant is a very important procedure. However, since the conventional performance evaluation method is an Excel-based manual method, the preparation procedure is complicated and the versatility is poor. In this paper, we analyze the problems of the existing performance evaluation system, effectively model the equipment, calculate the missing physical properties, and improve the versatility, efficiency and accuracy of the performance evaluation through the equipment modeler which performs automatic index calculation based on this.

Data Acquisition System Design of I&C System in Nuclear Power Plant (원자력 발전소 계측제어시스템의 정보취득장치 설계)

  • 조정환;이동희
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.2
    • /
    • pp.102-108
    • /
    • 2003
  • This paper presents a new Data acquisition system that can improve a accuracy and response characteristics by designing a SDAS(Signal Datat Acquisition System). I&C(Instrumentation and Control) system, which it applied for Nuclear Power Plant, affects for safety either directly or indirectly. It should be assessed by the equipment qualification procedure to confirm the functionality during design life before it apply on the nuclear power plant depending on safety classification. This paper proposes data acquisition system that required as an essential measurement equipment in the method and procedure of equipment qualification following of standards and codes of IEEE and Nuclear Regulatory Guide. It provides comparable and experimental studies have been carried out. The presented results from the above investigation show considerably improved accuracy performance in the data acquisition system. This circuit will be able to be used in high performance I&C system.

Safety assessment of nuclear fuel reprocessing plant under the free drop impact of spent fuel cask and fuel assembly part I: Large-scale model test and finite element model validation

  • Li, Z.C.;Yang, Y.H.;Dong, Z.F.;Huang, T.;Wu, H.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2682-2695
    • /
    • 2021
  • This paper aims to evaluate the structural dynamic responses and damage/failure of the nuclear fuel reprocessing plant under the free drop impact of spent fuel cask (SFC) and fuel assembly (FA) during the on-site transportation. At the present Part I of this paper, the large-scale SFC model free drop test and the corresponding numerical simulations are performed. Firstly, a composite target which is composed of the protective structure, i.e., a thin RC plate (representing the inverted U-shaped slab in the loading shaft) and/or an autoclaved aerated concrete (AAC) blocks sacrificial layer, as well as a thick RC plate (representing the bottom slab in the loading shaft) is designed and fabricated. Then, based on the large dropping tower, the free drop test of large-scale SFC model with the mass of 3 t is carried out from the height of 7 m-11 m. It indicates that the bottom slab in the loading shaft could not resist the free drop impact of SFC. The composite protective structure can effectively reduce the damage and vibrations of the bottom slab, and the inverted U-shaped slab could relieve the damage of the AAC blocks layer dramatically. Furthermore, based on the finite element (FE) program LS-DYNA, the corresponding refined numerical simulations are performed. By comparing the experimental and numerical damage and vibration accelerations of the composite structures, the present adopted numerical algorithms, constitutive models and parameters are validated, which will be applied in the further assessment of drop impact effects of full-scale SFC and FA on prototype nuclear fuel reprocessing plant in the next Part II of this paper.

An Integrated Translation of Nuclear Power Plant Design Data ftom Specification-driven Plant Design Systems to a Neutral Product Model (사양 기반 플랜트 설계 시스템에서 생성된 원자력 플랜트 설계 데이터의 중립 모델로의 통합 변환)

  • Mun, Du-Hwan;Yang, Jeong-Sam;Han, Soon-Hung
    • Korean Journal of Computational Design and Engineering
    • /
    • v.14 no.2
    • /
    • pp.96-104
    • /
    • 2009
  • It gradually becomes important to study on how to efficiently integrate and manage plant lifecycle data such as 2D schematic and 3D solid data, logical configuration data, and equipment specifications data. From this point of view, converting plant design data from various systems into neutral data independent from any commercial systems is one of important technologies for the operation and management of plants which usually have a very long period of life. In order to achieve this goal, a neutral model for efficient integration and management of plant data was defined. After schema mapping between one of specification-driven plant design systems and the neutral model was performed, a plant data translator is also implemented according to the mapping result. Finally, by experiments with nuclear power plant design, the feasibility of the translator was demonstrated.