• Title/Summary/Keyword: Plant Diversity

Search Result 1,526, Processing Time 0.028 seconds

Plant Diversity and Density, Driving Forces of the Feeding Activity of Herbivores in a Temperate Forest of Southern South Korea (한국 남부 온대림 초식 곤충 식흔량에 영향을 주는 식물 다양성과 밀도)

  • Kim, Nang-Hee;Choi, Sei-Woong
    • Korean Journal of Ecology and Environment
    • /
    • v.51 no.4
    • /
    • pp.322-330
    • /
    • 2018
  • Herbivory is a major functional component of forest ecosystems, and herbivorous insects comprise about 25% of all insect species. Increasing plant diversity is related to herbivore abundance and diversity, which affects the level of leaf damage caused by insects. This study was conducted to identify plant-related variables such as plant diversity and number of leaves and density-related variables, basal area, and diameter at breast height (DBH) in a temperate forest of southern South Korea. To assess the level of leaf damage caused by leaf chewing insects, we set up two 0.1 ha plots in a temperate deciduous forest on Mt. Jirisan National Park. Plant richness differed between two sites: 16 species in 14 families(site 1) and 19 species in 15 families (site 2). Fisher's alpha index based on plant species richness and abundance resulted in 4.41 (site 1) and 6.57 (site 2). However, the sum of basal area of each site was higher in site 1 ($6.6m^2$) than site 2 ($3.7m^2$). The total surveyed leaves at two sites were 3,832 and 4,691, respectively and the damage leaves were 1,544 and 2,136, respectively. The mean leaf damage level was 11.2% (${\pm}1.76%$) in two study sites: the leaf damage level of the site 1 (11.99%) was significantly higher than site 2 (10.59%). Stepwise regression analysis showed that species diversity and evenness were the significant variables for leaf damages by chewing herbivores. NMDS ordination also identified that high tree density and low species diversity were the significant variables. This suggested that the level of damage was significantly higher in plots with low plant diversity and high tree density. In the future, we will investigate other guilds of herbivores such as sap-suckers, miners and gallers in temperate deciduous forests.

Do Physiognomically Designated Protected Areas Match Well with Ecological Data based upon Diversity Indices and Ordination? Implications for Urban Forest Conservation

  • Kee Dae Kim
    • Journal of Environmental Science International
    • /
    • v.32 no.5
    • /
    • pp.329-341
    • /
    • 2023
  • We surveyed the vegetation of an ecological landscape preservation area (legally protected conservation areas or national parks) and the surrounding areas of Mt. Cheonggye, Republic of Korea, to explore the conservation implications for preservation areas and surrounding transition areas. We calculated diversity indices to identify the properties of the preservation and surrounding areas that are relevant to conservation efforts. We then compared the plant community composition between the areas using field and quadrat surveys in the preservation and surrounding areas. The cover of the dominant species in all tree and herb layers was markedly higher in the preservation area than in the peripheral zones. The species richness indices were significantly higher in the preservation area than in the peripheral zones. Ordination using detrended canonical correspondence analyses showed that the cover of the dominant tree species and rocks could explain the distribution of plant species in the Cartesian space of the ordination. Our results demonstrate that physiognomically designated protected areas match well with ecological data based on diversity indices and ordination analyses and that disturbances in the areas surrounding the ecological landscape of preservation areas can have considerable impacts on plant diversity indices. Hence, the preservation and management of surrounding areas are essential conservation elements for protecting the entire ecological landscape of preservation areas.

Analysis of the genetic diversity and population structure of Lindera obtusiloba (Lauraceae), a dioecious tree in Korea

  • Ho Bang Kim;Hye-Young Lee;Mi Sun Lee;Yi Lee;Youngtae Choi;Sung-Yeol Kim;Jaeyong Choi
    • Journal of Plant Biotechnology
    • /
    • v.50
    • /
    • pp.207-214
    • /
    • 2023
  • Lindera obtusiloba (Lauraceae) is a dioecious tree that is widely distributed in the low-altitude montane forests of East Asia, including Korea. Despite its various pharmacological properties and ornamental value, the genetic diversity and population structure of this species in Korea have not been explored. In this study, we selected 6 nuclear and 6 chloroplast microsatellite markers with polymorphism or clean cross-amplification and used these markers to perform genetic diversity and population structure analyses of L. obtusiloba samples collected from 20 geographical regions. Using these 12 markers, we identified a total of 44 alleles, ranging from 1 to 8 per locus, and the average observed and expected heterozygosity values were 0.11 and 0.44, respectively. The average polymorphism information content was 0.39. Genetic relationship and population structure analyses revealed that the natural L. obtusiloba population in Korea is composed of 2 clusters, possibly due to two different plastid genotypes. The same clustering patterns have also been observed in Lindera species in mainland China and Japan.

Comparing Plant Species Diversity of Mountainous Deserts - Successes and Pitfalls

  • Van Etten, Eddie J.B.
    • The Korean Journal of Ecology
    • /
    • v.27 no.2
    • /
    • pp.79-86
    • /
    • 2004
  • An extensive study of the vegetation characteristics of the Hamersley Ranges, a mountainous desert area of north-west Australia, facilitated the comparison of plant species diversity measures with mountainous deserts of other parts of the world. Alpha diversity was defined as the number of species co-existing at local scales and was found to average 18 species per 0.1 ha for the Hamersley Ranges. This was found to be similar to seven other mountainous deserts in North and South America, and southern Africa. Variation in alpha diversity between these deserts was found to considerably lower than within deserts, suggesting that local processes control species richness at local scales. Beta diversity, defined here as turnover in species composition at various spatial scales, can be measured in many ways. For the Hamersley Ranges, Wilson's β ranged from 1.2 to 1.6 for five sites along a topographic gradient, whereas Whittaker's β between different plant communities was found to average 0.93. Comparable data was not found for other desert areas, but comparisons to non-desert areas suggest beta diversity within landscapes is relatively high and is likely to reflect the considerable landform heterogeneity of the Hamersley Ranges. 55∼70% of species were shared between different landscapes of the Hamersley Ranges; comparisons to other regions suggest beta diversity at this scale is relatively low. Gamma diversity, the number of species over large spatial extents, was successfully compared using regression analysis of the log-log species - area relationship. This revealed that the northern Sonoran desert has significantly less species than the Nama (inland) Karoo and Hamersley Ranges over medium spatial extents, but species numbers were similar at a regional scale. Several constraints to the valid comparison of species diversity were identified, including lack of standardisation of sampling techniques, the wide range of measures employed, general lack of published data, and the influence of the various components of spatial scale on most diversity measures. Recommendations on how to improve future comparative work are provided.

Genetic Diversity in Rauvolfia tetraphylla L.f using RAPD Markers

  • Padmalatha, K;Prasad, MNV
    • Journal of Plant Biotechnology
    • /
    • v.33 no.2
    • /
    • pp.139-145
    • /
    • 2006
  • The present study is the first report of molecular variations in different accessions of Rauvolfia tetraphylla L.f, a medicinally important plant collected from seven locations of Andhra Pradesh, India. Molecular analysis was carried out using RAPD markers. Out of the 40 primers screened from OPA and OPC Kts, a total of 205 scorable polymorphic markers out of 397 total markers were generated. Polymorphism of 51.6% was found with 3 unique markers. Levels of genetic diversity within accessions i.e., the genetic distance ranged from 0.816-0.932. Cluster analysis based on Dice coefficient showed two major groups indicating that mostly in cross-pollinated plants, high levels of differentiation among accessions exists independent of geographical distance. Hence the results of the present study can be seen as a starting point for future researches on the population and evolutionary genetics of this species. Understanding such variation would also facilitate their use in various conservational management practices, rootstock breeding and hybridisation programmes.

Comparison of sampling methods in biodiversity analysis of plant communities living in a riparian park area of Nakdong river (낙동강 수변공원에 서식하는 식물 군집의 종 다양성 분석 : 조사 방법에 따른 차이 비교)

  • Nam, Ki-jung;Kim, Min-jung
    • Journal of Wetlands Research
    • /
    • v.24 no.4
    • /
    • pp.312-319
    • /
    • 2022
  • The species diversity of plant communities is quantitatively measured, and can be affected by plant monitoring methods. This study experimentally compared the structure and diversity of plant communities living in five waterfront park areas in Nak-dong River using three plant survey methods (modified Whittaker, modified Daubenmire, and modified point-line intercept method). According to the diversity profile, the modified Whittaker method produced the highest species richness regardless of the location, but which method makes the highest diversity of dominant species varies depending on the location. The Beta diversity of the communites calculated from the modified Whittaker and the modified Daubenmire suggested that structures of plant communities in five locations were similar, while the Point-line interception method suggested that a small number of dominant species were shared between communities.

Genetic Diversity and Association Analyses of Chinese Maize Inbred Lines Using SSR Markers

  • Vathana, Yin;Sa, Kyu Jin;Lim, Su Eun;Lee, Ju Kyong
    • Plant Breeding and Biotechnology
    • /
    • v.7 no.3
    • /
    • pp.186-199
    • /
    • 2019
  • We selected 68 Chinese maize inbred lines to understand the genetic diversity, population structure, and marker-trait associations for eight agronomic traits and 50 simple sequence repeats (SSRs) markers. In this study, effective traits, such as days of anthesis (DA), days of silking (DS), ear height (EH), plant to ear height ratio (ER), plant height (PH), and leaf width (LW) were divided into PC1 and PC2 by PCA analysis for maize inbred lines. Genetic diversity analysis revealed a total of 506 alleles at 50 SSR loci. The mean number of alleles per locus was 10.12. The averages of genetic diversity (GD) and polymorphic information content (PIC) values were 0.771 and 0.743, respectively. Based on a membership probability threshold of 0.80, the population structure revealed that the total inbred lines were divided into three major groups with one admixed group. A marker-trait association using Q + K MLM showed that nine SSR markers (bnlg1017, umc2041, umc2400, bnlg105, umc1229, umc1250, umc1066, umc2092, and umc1426) were related with seven agronomic traits. Among these SSR markers, eight SSR markers were associated with only one agronomic trait (DA, DS, ER, LL, LW, PH, and ST), whereas one SSR marker (umc1229) was associated with two agronomic traits (DA and ST). These results will help in optimizing the choice of inbred lines for cross combinations, as well as in selecting markers for further maize breeding programs.

Genetic Diversity and Metabolite Analysis of Gastrodia elata by Inter-Simple Sequence Repeats (ISSR) Markers (ISSR 표지에 의한 천마의 유전 다양성분석 및 기능성 물질분석)

  • Kim, Hyun Tae;Kim, Ji Ah;Park, Eung Jun
    • Korean Journal of Medicinal Crop Science
    • /
    • v.20 no.6
    • /
    • pp.440-446
    • /
    • 2012
  • Gastrodia elata, an achlorophyllous orchid plant, is rare medicinal plant. We investigated the genetic diversity in G. elata from 4 locations by using Inter-Simple Sequence Repeats (ISSR) markers. Shannon's information Index (S.I.) indicating genetic diversity ranged from 0.255 (Pocheon) to 0.322 (Muju) with the mean of 0.29. The level of genetic diversity was lower than other plant and most genetic diversity was allocated among individuals within populations (26.81%). The UPGMA dendrogram based on genetic distance failed in showing decisive geographic relationship. In the case of gastrodin (GA), the major components in G. elata, Sangju was highest. The ergothionine (ERG) was detected a lot of contents in Muju and Pocheon. In conclusion, our results is very important information for explaining relationship of genetic variation and functional substances without the effects of environment factors and developing genetic marker by ISSR in G. elata, which may be responsible for the development of breeds with a lot of functional substance in G. elata.

Investigation Plant Species Diversity and Physiographical Factors in Mountain Forest in North of Iran

  • Hashemi, Seyed Armin
    • Journal of Forest and Environmental Science
    • /
    • v.26 no.1
    • /
    • pp.1-7
    • /
    • 2010
  • Species diversity is one of the most important specifications of biological societies. Diversity of organisms, measurement of variety and examination of those hypotheses that are about reasons of diversity are such as affairs that have been desired by the ecologists for a long time. In this research, diversity of plant species in forest region, numbers of 60 sample plots in 256.00 square meters have been considered in random - systematic inventory was considered. In each sample plot, four micro-plots in 2.25 square meters in order to study on herbal cover, were executed that totally 240 micro-plots were considered. At each plot six diversity indices in relation to physiographic factors (slope, geographical aspect and altitude from the sea level) were studied. The results indicate that species diversity is more in the northern direction and also species diversity in slops less than 30% has the most amounts. Factor of altitude from the sea level did not have meaningful relation with species diversity. Through study on correlation of the numbers of species in sample plots with indices and also process and role of indices in different processors of analysis, Simpson's reciprocal index was suggested as suitable index in this type of studies.

Ecological Division of Habitats by Analysis of Vegetation Structure and Soil Environment -A Case Study on the Vegetation in the Kimpo Landfills and Its Periphery Region- (식생구조와 토양환경 분석을 통한 서식처의 생태학적 구분 -김포매립지와 그 근린 지역의 식생을 사례로 -)

  • Kim, Jong-Won;Yong-Kyoo Jong
    • The Korean Journal of Ecology
    • /
    • v.18 no.3
    • /
    • pp.307-321
    • /
    • 1995
  • Division of ecoregions having respective functions was attempted through quantitative and qualitative analysis on vegetation diversity, and heterogeneity and on soil environment of the study sites. Field research was carried out in a square of 81 ㎢ around Andongpo (126°38'E, 37°30'N), Kimpo-gun, Kyonggi provice. Conventional methods applied are as follows: classical syntaxonomy by the Zurich-Montpellier School, interpolation method to determine the degree of diversity, heterogeneity and distribution pattern of vegetation, and correlation analysis between soil properties and plant communities. 41 plant communities were identified and composed of 6 forests, 4 mantle and 31 herb communities including 6 saltmarsh plant communities. In a mesh, number of plant communities was highly correlated to the number of species. The highest number of plant community and species was 25 communities·km-2·mesh-1 and 381 species· km-2·mesh-1 ,and the highest value of vegetation heterogeneity was 28.1 species· community-1·mesh-1. Their lowest numbers were 4 communities·km-2·mesh-1. and 28 species·km-2·mesh-1. and 7 species·community-1·mesh-1, respectively. Contour map on vegetation diversity and heterogeneity enabled us to establish two regions; coastal and inland vegetation. Isoline 〔150〕,〔10〕and〔10〕and〔15〕on the species diversity, the community diversity and the vegetation heterogeneity, respectively, were regarded as ecolines in the study area. Cl- content was recognized as the most important factor from correlation analysis between soil properties. Ordination of sites indicated that the study area be divided into two edaphic types: inland and coastal habitats. It was considered that the extent of desalinization in soil played a major role in determining the species composition in the reclamed area. By matching edaphic division of habitats with division of vegetation structures, designation of ecoregion was endorsed. The approach of current study was suggested as an effective tool to implement an assessment of the vegetation dynamics by the disparity of natural environment and anthropogenic interferences.

  • PDF