• Title/Summary/Keyword: Plant Design

Search Result 3,878, Processing Time 0.034 seconds

Controller Design of the 2nd-order System Based on Phase Margin Specifications

  • Lee, Bo-Hyung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.54.3-54
    • /
    • 2001
  • This paper presents a controller design technique for standard 2nd-order system satisfying user-specified phase margin. A simple method is presented to meet stability margin for the 2nd-order system, which is important since the 2nd-order plant models are frequently encountered in the practical plant models such as actuators of the optical drive systems. Through the comparison of the specified stability margin and achieved stability margin, it is shown in the simple example that the proposed technique is useful in the initial design of control systems with stability margin specifications.

  • PDF

Strain-Based Structural Integrity Evaluation Methods for Nuclear Power Plant Piping under Beyond Design Basis Earthquake (설계기준초과지진 하의 원전 배관 구조건전성 평가를 위한 변형률 기반 방법)

  • Lee, Dae Young;Park, Heung Bae;Kim, Jin Weon;Ryu, Ho Wan;Kim, Yun-Jae
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.12 no.2
    • /
    • pp.66-70
    • /
    • 2016
  • Following the 2011 Fukushima Nuclear Power Plant accident, the IAEA has issued a revised version of the Nuclear Safety Standard for beyond design basis earthquake to consider the core meltdown accident. In Korea, relevant laws and regulations were also revised to consider beyond design basis earthquake to nuclear components. In this paper, CAV, an seismic damage factor that determines the restart of nuclear power plant after operating breakdown earthquake, is proposed for extension to the beyond design basis earthquake. For pipings not satisfying the beyond design basis earthquake condition, several evaluation methods are suggested, such as strain-based evaluation methods, simple nonlinear analysis method and cumulative damage evaluation method.

Development and Application of Detailed Procedure to Evaluate Fatigue Integrity for Major Components Considering Operating Conditions in the Nuclear Power Plant (원전 운전환경을 고려한 주기기 피로 건전성 상세평가 절차개발 및 적용)

  • Kim, Byong-Sup;Kim, Tae-Soon
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.6 s.78
    • /
    • pp.20-25
    • /
    • 2006
  • In the design of class 1 components to apply ASME code section III NB, a fatigue is considered as one of the important failure mechanisms. Fatigue analysis procedure and standard fatigue design curve(S-N curve) is suggested in ASME code, which had to be performed to meet the integrity of components at the design step. As the plant life extension for operating power plants and the long-lived plant design, however, are being progressed, the fact which the existing ASME fatigue design curve can not consider fatigue effects sufficiently comes to the fore. To find the technical solution for these problems, a number of researches and discussion are continued up to now. In this study, the detailed fatigue analyses using the 3 dimensional modeling for the fatigue-weakened components were performed to develop the optimized fatigue analysis procedure and their results are compared with other reference solutions.

The Case of CM as Applied to the Pre Design Phase - Focused on the Case of YongJu New Tobacco Manufacturing Plant - (설계 전 단계에서의 CM 적용 사례 - 영주 신 제조창 CM 사례를 중심으로 -)

  • Park Yong-Jun
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.19-26
    • /
    • 2003
  • In the face of the deterioration of tobacco manufacturing plant, we've got the plan for now manufacturing factory for the competitiveness, modernization, rationalization and environment. To achieve the goals, it was necessary to plan and investigate in the early stage of project. Consequently. We determined to introduce the CM in the early stage. We Performed the whole phase of CM services front the pre design phase services like feasibility analysis of site and building, plant master plan, selection of manufacturing facilities and drawing up the RFP, to maintenance management phase after the completion of a construction work. Contrary to the another CM projects, YongJu New Tobacco Manufacturing Plant CM organized the CM team with expert in field before the design development. This study analyze and evaluate the CM services of YongJu project which performed on the pre design phase. The purpose of this study is to emphasize the importance of pre design phase CM and support that CM services will start from the pre design phase.

  • PDF

Development of VR Monitoring System for Gas Plant (가상현실을 이용한 가스플랜트의 VR Monitoring System 개발)

  • Seo, Myeong-Won;Jo, Gi-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.5
    • /
    • pp.788-796
    • /
    • 2001
  • VR(Virtual reality) technologies have given engineers the ability to design, test, and evaluate engineering systems in a virtual environment. The virtual plant is the highlight of the application of the VR technology to plant engineering. Plant design, maintenance, control, management, operation are integrated in the virtual plant. The VR monitoring system including the concept of the virtual plant is developed to replace a current control room that has number of gages and warning lamps in two-dimensional panels which shows the operating status of a plant. The operating status of the plant is displayed in the VR monitoring system through the realistic computer graphics. Sophisticated, realistic and prompt control becomes possible. The VR monitoring system consists of advanced visualization, walk-through simulation and navigation. In the virtual environment, a user can navigate and interact with each component of a plant. In addition, the user can access the information by just clicking interesting component. The VR monitoring system is operated with various modules, such as (1) virtual plant constructed with Graphic Management System (GMS), (2) Touch & Tell System, and (3) Equipment DB System of Part. In order to confirm the usefulness of the VR monitoring system, a pilot gas plant which is currently being used for plant operator training is taken as application. The end of the paper gives an outlook on the future work and a brief conclusion.

Comparison of International Competitive Power of Korea-Japan Plant Industry (한.일 플랜트 산업의 국제 경쟁력 비교)

  • 신용하
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.19 no.39
    • /
    • pp.117-128
    • /
    • 1996
  • Plant is production unit which consists of hardware for manufacturing like machinery, equipments and software for its installation like design, construction, supervision, engineering, know-how and trial operation. In the view of this, plant industry can be defined as an aggregation of manufacturers and sellers of plant. In this study, I would like to present the direction of cooperation for mutual benefit of Korea-Japan by understanding international competitive power of both countries' plant industry, which is not only growing as a national strategic industry, but also occupying the most important part in international economic cooperation.

  • PDF

Design Criteria Derivation of Supercritical Carbon Dioxide Power Cycle based on Levelized Cost of Electricity(LCOE) (전력단가추정기반 초임계 이산화탄소 발전 시스템 최적 설계 인자 도출)

  • Park, Sungho;Cha, Jaemin;Kim, Joonyoung;Shin, Junguk;Yeom, Choongsub
    • Clean Technology
    • /
    • v.23 no.4
    • /
    • pp.441-447
    • /
    • 2017
  • The economic analysis for the power plant developed in the conceptual design phase is becoming more important and, research on process optimization for process development that meets the target economic is actively carried out. In the filed of power generation systems, economic assessment methods to predict the levelized cost of electricity (LCOE) has been widely applied for comparing economic effect quantitatively. In this paper, the platform that design criteria of key component required to optimize economic of power cycle can be calculated reversely was established roughly and design criteria of the key equipment (Compressor, turbine, heat exchanger) required to meet the target LCOE (the LCOE of supercritical steam Rankine cycle) was derived when the supercritical $CO_2$ power cycle is applied to the coal-fired power plant.

Design and Performance Test of SCR Pilot Plant($1,000Nm^{3}/hr$) ($1,000Nm^{3}/hr$급 SCR Pilot Plant의 설계 및 성능실험)

  • Kim, J.I.;Chang, I.G.;Seon, C.Y.;Kim, J.S.;Chon, M.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.979-984
    • /
    • 2001
  • As a preceding process for developing design technology and establishing operation technology, the design procedure of the SCR(Selective Catalytic Reduction) pilot plant that can handle $1,000Nm^{3}/hr$ of flue gas was reported in this paper. And we also considered several factors that might cause abnormality of the plant in the designing process. The plant was designed and fabricated to test the $DeNO_{x}$ performances in variable operating conditions in the range of $3,000{\sim}36,000hr^{-1}/hr$ in space velocities, $1.67{\sim}6\;m/s$ in linear velocities, $200{\sim}500^{\circ}C$ temperatures, $300{\sim}1,000Nm^{3}/hr$ flow rates, and $0{\sim}1.4:1\;NH_{3}/NO$ ratios. In order to maintain the flow uniformity, the guide vanes and flow straightener were designed and constructed in the plant. The SCR pilot plant can be operated by the automatic control system, which enable to obtain performance data in real time and to set up the operating technology. The catalyst reactor consists of 4 catalyst layers and surface area of each layer can be adjusted to be of small size. Arrangement of catalysts per layer is $3{\times}6$ with the catalyst dimensions of $150{\times}150{\times}500mm(L{\times}W{\times}H)$.

  • PDF

Overall Performance characteristic for 300MW Taean IGCC Plant (300MW 태안 IGCC 플랜트 종합성능 특성)

  • Kim, Hakyong;Kim, Jaehwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.129.2-129.2
    • /
    • 2010
  • As a part of the government renewable energy policy, KOWEPO is constructing 300MW IGCC plant in Taean. IGCC plant consists of gasification block, air separation unit and power block, which performance test is separately conducted. Overall performance test for IGCC plant is peformed to comply with ASME PTC 46. Major factors affected on the overall efficiency for IGCC plant are external conditions, each block performance(gasification, ASU, power block), water/steam integration and air integration. Performance parameters of IGCC plant are cold gas efficiency, oxygen consumption, sensible heat recovery of syngas cooler for gasification block and purity of oxygen, flow amount of oxygen and nitrogen, power consumption for air separation unit and steam/water integration among the each block. The gas turbine capacity applied to the IGCC plant is 20 percent higher than NGCC gas turbine due to the low caloric heating value of syngas, therefor it is possible to utilize air integration between gas turbine and air separation unit to improve overall efficiency of the IGCC plant and there is a little impact on the ambient condition. It is very important to optimize the air integration design with consideration to the optimized integration ratio and the reliable operation. Optimized steam/water integration between power block and gasification block can improve overall efficiency of IGCC plant where the optimized heat recovery from gasification block should be considered. Finally, It is possibile to achieve the target efficiency above 42 percent(HHV, Net) for 300MW Taean IGCC plant by optimized design and integration.

  • PDF

A basic Study on Establishment Plan of Design Information Traceability through Design Information Flow Identification for Controlled Equipment during the NPP Lifecycle (원전 생애주기 관리대상 기기의 정보 흐름 규명을 통한 설계정보 추적성 구현방안에 대한 기초 연구)

  • Lim, Byung-Ki
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.183-184
    • /
    • 2017
  • Some of the information created during the design phase of an New NPP life cycle is useful only for the execution of the construction phase; however, much of the information greatly impacts the longer-term operational phase. To most make use of design and construction information produced by data based design system during the construction and operation phase, This research is identified controlled data and drawn design information of controlled equipment from documents generated during the life-cycle stages. This study aimed to analyze related documents to assure traceability of controlled equipment from design phase through O&M and then suggested DB(Data Base) based control method on technical information of major equipment throughout nuclear power plant lifecycle.

  • PDF