• Title/Summary/Keyword: Plant Capacity

Search Result 1,531, Processing Time 0.032 seconds

Authentication of Hempseed Oil from Different Commercial Oils Using Simple UV-Vis Spectrophotomety (UV-Vis spectrophotometry법을 이용한 다양한 유지류로부터 헴프씨드 오일의 진위 판별법)

  • Lee, Yun-Jin;Kang, Deok-Gyeong;Kim, Young-Min;Sohn, Ho-Yong
    • Journal of Life Science
    • /
    • v.32 no.5
    • /
    • pp.362-367
    • /
    • 2022
  • Hempseed, a dehulled Cannabis fructus, has high nutraceutical potential. It has plenty of essential amino acids, vitamins, and essential polyunsaturated fatty acids, including α- and γ-linolenic acid. Increased exercise capacity, cognitive function, and ameliorative effects against hypercholesterolemia, neuro-inflammation, thrombus formation, and learning and memory impairment were reported in hemp-seed oil-administered models. Therefore, the market prices of hempseed oil are 45~140-fold higher than the other plant-derived oils, such as soy, corn, olive, canola, or linseed oil. In this study, instead of FTIR (Fourier Transform Infrared Spectroscopy) or FTIR-Raman spectroscopy, a simple UV-Vis spectrophotometry method was developed to authenticate the hempseed oil. Measurements of absorbance at 245, 305, and 415 nm of oils and calculations of 245/415 and 315/415 nm provided that the ratios of 245/415 and 315/415 nm of authentic hempseed oils were 12.9 and 9.6, respectively. The 245/415 and 315/415 nm of soy oil, corn oil, canola oil, and linseed oil were 35.4~61.8 and 29.7~50.8, respectively. This simple UV-Vis spectrophotometry method could also be applied to differentiate hempseed oil from blended oil products in markets.

Effects of Vegetation on Pollutants and Carbon Absorption Capacity in LID Facilities (LID시설에서의 오염물질 및 탄소흡수능에 식생이 미치는 영향)

  • Hong, Jin;Kim, Yuhyeon;Gil, Kyungik
    • Journal of Wetlands Research
    • /
    • v.24 no.2
    • /
    • pp.115-122
    • /
    • 2022
  • As the impermeable area of soil increases due to urbanization, the water circulation system of the city is deteriorating. The existing guidelines for low impact development (LID) facilities installed to solve these water problems or in previous studies, engineering aspects are more prominent than landscaping aspects. This study attempted to present an engineering and landscaping model for reducing pollutants by identifying the effects of vegetation on rainfall outflows and pollutant reduction in bioretention and the economic aspects of planting. Based on the results of artificial rainfall monitoring at Jeonju Seogok Park and the literature on vegetation rainfall runoff and pollutant reduction performance, the best vegetation for reducing pollution compared to cost was Lythrum salicaria L and Salix gracilistyla Miq. was the best vegetation for carbon storage. If you insist to design plants with only these two plantation, there is no choice but to take risks such as biodiversity. Herbaceous plants such as Lythrum salicaria L can be replaced by death of the plants or pests if considered planting various plants. The initial planting cost could expensive, but it is also necessary to mix and plant Salix gracilistyla Miq, which are woody plants that are advantageous in terms of maintenance, according to the surrounding environment and conditions. Based on the conclusions drawn in this study, it can be a reference material when considering the reduction of pollution by species and carbon storage of vegetation in LID facilities.

Evaluation of Particulate Matter (PM2.5) Reduction through Greenwalls in Classrooms (교실 내 벽면녹화를 통한 초미세먼지(PM2.5) 저감 효과 평가)

  • Chi-Ku Choi;Ho-Hyeong Yang;Ho-Hyun Kim;Hyuk-Ku Kwon
    • Journal of Environmental Health Sciences
    • /
    • v.49 no.4
    • /
    • pp.183-189
    • /
    • 2023
  • Background: The indoor air quality of classrooms, in which the capacity per unit area is high and students spend time together, must be managed for safety and comfort. It is necessary to develop an eco-friendly indoor air quality reduction method rather than biased management that relies solely on air purifiers. Objectives: In this study, plants and air purifiers were installed in middle school classrooms to evaluate the indoor PM2.5 reduction. Methods: Four middle school classrooms were selected as test beds. Air quality was monitored in real-time every one minute using IoT equipment installed in the classrooms, corridors, and rooftops. After measuring the background concentration, plants and air purifiers were installed in the classroom and the PM2.5 reduction effect was analyzed through continuous monitoring. Results: After installing the plants and air purifiers, the average PM2.5 concentration was 33.7 ㎍/m3 in the classrooms without plants and air purifiers, 25.6 ㎍/m3 in classrooms with plants only, and 21.7 ㎍/m3 in classrooms with air purifiers only. In the classroom where plants and air purifiers were installed together, it was 20.0 ㎍/m3. The reduction rates before and after installation were 4.5% for classrooms with plants only, 16.5% for classrooms with air purifiers only, and 27.6% for classrooms with both plants and air purifiers. The I/O ratio, which compares the concentration of PM2.5 in classrooms with corridors and outside air, also showed the lowest in the order of plants and air purifiers, air purifiers, and plant-only classrooms. Conclusions: The PM2.5 reduction effect of using plants was confirmed, and it is expected to be used as basic data for the development of environmentally-friendly indoor air quality improvement methods.

Antioxidant and anti-inflammatory effects and mechanism of Abeliophyllum distichum leaf extract in RAW264.7 macrophages (RAW264.7 대식세포에서 미선나무 잎 추출물의 항산화, 항염증 효능 및 기전연구)

  • Juhee Yoo;Kyung-Ah Kim
    • Journal of Nutrition and Health
    • /
    • v.56 no.5
    • /
    • pp.455-468
    • /
    • 2023
  • Purpose: Abeliophyllum distichum (A.distichum) is a plant native to Korea. In this study, we investigated the mechanism of antioxidant and anti-inflammatory effects of the leaf extract of A.distichum. Methods: The antioxidant capacity of the A.distichum leaf extract was determined based on the total polyphenol content, 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assay, and the ferric reducing antioxidant power (FRAP) assay. The anti-inflammatory effects of the A.distichum leaf extract were evaluated by measuring the production of nitric oxide (NO) and the expression levels of proinflammatory cytokines including tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 using the enzyme-linked immunosorbent assay (ELISA) and reverse transcription quantitative real-time PCR (RT-qPCR). In addition, the expression of heme oxygenase-1 (HO-1), nuclear transcription factor-erythroid 2 related factor (Nrf2), inducible nitric oxide synthase (iNOS), and cyclooxygenase 2 (COX-2), as well as the activation of nuclear factorkappa B (NF-ĸB) were examined using the western blot analysis. Results: The total polyphenol content of the A.distichum leaf extract was 329.89 ± 30.17 gallic acid equivalents mg/g and the DPPH and ABTS scavenging activities were 55% and 70%, respectively. Additionally, the FRAP value of the extract was 743.68 ± 116.59 mg/mL. After 12-hour treatment with the A.distichum leaf extract, there was a tendency for the Nrf2 expression to increase, and the expression of HO-1 was significantly elevated in the RAW264.7 cells. The A.distichum leaf extract treatment resulted in decreased levels of NO, TNF-α, IL-6, and IL-1β, as well as reduced expression of iNOS and COX-2, along with inhibition of NF-κB activation in lipopolysaccharide-stimulated RAW264.7 cells. Conclusion: These results suggest that the A.distichum leaf extract exerts antioxidative and anti-inflammatory effects by upregulating the expression of HO-1 and downregulating NF-κB activation.

A Study on Water Demand Forecasting Methods Applicable to Developing Country (개발도상국에 적용 가능한 물수요 예측 방법 연구)

  • Sung-Uk Kim;Kye-Won Jun;Wan-Seop Pi;Jong-Ho Choi
    • Journal of Korean Society of Disaster and Security
    • /
    • v.16 no.4
    • /
    • pp.75-84
    • /
    • 2023
  • Many developing countries face challenges in estimating long-term discharge due to the lack of hydrological data for water supply planning, making it difficult to establish a rational water supply plan for decision-making on water distribution. The study area, the Bandung region in Indonesia, is experiencing rapid urbanization and population concentration, leading to a severe shortage of freshwater. The absence of water reservoir prediction methods has resulted in a water supply rate of approximately 20%. In this study, we aimed to propose an approach for predicting water reservoirs in developing countries by analyzing water safety and potential water supply using the MODSIM (Modified SIMYLD) network model. To assess the suitability of the MODSIM model, we applied the unit hydrograph method to calculate long-term discharge based on 19 years of discharge data (2002-2020) from the Pataruman observation station. The analysis confirmed alignment with the existing monthly optimal operation curve. The analysis of power plant capacity revealed a difference of approximately 0.30% to 0.50%, and the water intake safety at the Pataruman point showed 1.64% for Q95% flow and 0.47% for Q355 flow higher. Operational efficiency, compared to the existing reservoir optimal operation curve, was measured at around 1%, confirming the potential of using the MODSIM network model for water supply evaluation and the need for water supply facilities.

Evaluation of the quality characteristics of nitrogen gas-stunned chicken meat and small intestine

  • Muhammad Shahbubul Alam;Dong-Heon Song;Sun-Moon Kang;Inho Hwang;Kuk-Hwan Seol;Soo-Hyun Cho;Jung-Hwan Jeon;Hyoun Wook Kim
    • Journal of Animal Science and Technology
    • /
    • v.66 no.4
    • /
    • pp.792-806
    • /
    • 2024
  • This study aimed to confirm the applicability of the new nitrogen (N2) gas stunning method in the broiler slaughtering process by comparing the meat and small intestine quality following different stunning methods (electrical, carbon dioxide (CO2), N2, and halal). Four treatments were compared: (i) electrical stunning (Elec), (ii) 80% CO2 gas stunning (CO2-gas), (iii) 98% N2 gas stunning (N2-gas), and (iv) the non-stunning method (halal). N2 gas stunning (98%) and the halal method were conducted at the pilot plant abattoir of the national institute of animal science, Korea, and electrical and 80% CO2 stunning were performed on the nearest commercial slaughter house. Meat pH24h, color (lightness, redness and yellowness), proximate composition, water holding capacity (WHC), cooking loss, and Warner-Bratzler shear force (WBSF) were measured, and in the small intestine, pH24h, color, thickness, and WBSF were measured. The Elec treatment showed high lightness, yellowness, and low redness in both meat and the small intestine, indicated by a pale color; the CO2-gas treatment showed high redness, low lightness, and low yellowness, and the coloration of meat from the N2-gas treatment was intermediate between Elec and CO2-gas. For other quality traits, the N2-gas showed good results and was between Elec and CO2-gas. Additionally, severe stress (low pH in both meats), low WHC in meat, and cracked small intestine with numerous apertures were observed in the CO2-gas, and pale colored hemorrhagic breast meat was found in the Elec. Therefore, in view of animal welfare and quality traits of meat and the small intestine, 98% N2 gas can be considered in broiler stunning.

A Study on Increasing the Efficiency of Biogas Production using Mixed Sludge in an Improved Single-Phase Anaerobic Digestion Process (개량형 단상 혐기성 소화공정에서의 혼합슬러지를 이용한 바이오가스 생산효율 증대방안 연구)

  • Jung, Jong-Cheal;Chung, Jln-Do;Kim, San
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.6
    • /
    • pp.588-597
    • /
    • 2016
  • In this study, we attempted to improve the biogas production efficiency by varying the mixing ratio of the mixed sludge of organic wastes in the improved single-phase anaerobic digestion process. The types of organic waste used in this study were raw sewage sludge, food wastewater leachate and livestock excretions. The biomethane potential was determined through the BMP test. The results showed that the biomethane potential of the livestock excretions was the highest at $1.55m^3CN4/kgVS$, and that the highest value of the composite sample, containing primary sludge, food waste leachate and livestock excretions at proportions of 50%, 30% and 20% respectively) was $0.43m^3CN4/kgVS$. On the other hand, the optimal mixture ratio of composite sludge in the demonstration plant was 68.5 (raw sludge) : 18.0 (food waste leachate) : 13.5 (livestock excretions), which was a somewhat different result from that obtained in the BMP test. This difference was attributed to the changes in the composite sludge properties and digester operating conditions, such as the retention time. The amount of biogas produced in the single-phase anaerobic digestion process was $2,514m^3/d$ with a methane content of 62.8%. Considering the value of $2,319m^3/d$ of biogas produced as its design capacity, it was considered that this process demonstrated the maximum capacity. Also, through this study, it was shown that, in the case of the anaerobic digestion process, the two-phase digestion process is better in terms of its stable tank operation and high efficiency, whereas the existing single-phase digestion process allows for the improvement of the digestion efficiency and performance.

Evaluation of the Parameters of Soil Potassium Supplying Power for Predicting Yield Response, K2O Uptake and Optimum K2O Application Levels in Paddy Soils. -II. Determination of Potassium Supplying Power by Gapon equation and Kas/Kai and Response to K2O application (수도(水稻)의 가리시비반응(加里施肥反應)과 시비량추정(施肥量推定)을 위한 가리공급력(加里供給力) 측정방법(測定方法) 평가(評價) -II. Gapon식(式)과 Kas/Kai에 의한 가리공급력(加里供給力) 측정(測定)과 시비반응(施肥反應))

  • Park, Yang-Ho;Ahn, Su-Bong;Park, Chon-Suh
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.17 no.4
    • /
    • pp.363-370
    • /
    • 1984
  • In order to predict the possible fertilizer requirement from the K supplying capacity of soil, the relative K activity ratio, Kas/Kai and Gapon coefficients, KG. were determined for the soil samples before flooding and at heading stage of rice in pot experiment. These parameters assumed as the K supplying capacity of soils were discussed through correlation with other factors such as grain yields or the amounts of $K_2O$ uptake by the rice plant. The results may be summarized as follows: 1. The KGo values in soils before flooding were 7.8, 6.6, and 7.1, whereas the Kas/Kai values were 1.37, 1.26 and 2.11, respectively, in clay, loam and sandy loam soils. 2. The significant yield responses to the application of potassium fertilizer were observed whenever the KG values in soils at heading stage become larger to the original KG values, regardless of any levels of fertilizer application. 3. The linear correlations between the exchangeable cation ratios [Kex./(Ca+Mg) ex.:me/100g] in soils and the potassium activity ratios ($[K^+]/\sqrt{[Ca^{{+}{+}}+Mg^{{+}{+}}]}$: mole/l) in equilibrium solutions were observed with different linear gradients according to the soil properties. 4. The Kas/Kai in the soils, estimated prior to the experiment, showed high correlations with the grain yields or the amounts of $K_2O$ uptake in the all treatments, while the Kas/Kai and the KGo in the soils at heading stage showed high correlations with the grain yields or the amounts of $K_2O$ uptake in only N 15 Kg/10a treatments. 5. The Kas/Kai and the KGo values determined in the soil at heading stage of rice showed high negative correlation each other and they could be used as soil factors for predicting potassium fertilizer requirement.

  • PDF

Relationship of Fitness and Substance of Porphyrin Biosynthesis Pathway in Resistant Transgenic Rice to Protoporphyrinogen Oxidase (Protox) Inhibitor (Protoporphyrinogen oxidase (Protox) 저해제 저항성 형질전환 벼의 적응성과 Porphyrin 생합성 경로물질과 관련성)

  • Yun, Young-Beom;Kwon, Oh-Do;Back, Kyoung-Whan;Lee, Do-Jin;Jung, Ha-Il;Kuk, Yong-In
    • Korean Journal of Weed Science
    • /
    • v.31 no.2
    • /
    • pp.134-145
    • /
    • 2011
  • The objectives of this study were to investigate fitness difference in growth and rice yield in herbicide-transgenic rice overexpressing Myxococcus xanthus and Arabidopsis thaliana protoporphyrinogen oxidase (Protox) genes and non-transgenic rice. We also aimed to determine whether these fitness differences are related to ALA synthesizing capacity, accumulation of terapyrroles, reactive oxygen species, lipid peroxidation, and antioxidative enzymes at different growth stages of rice. Plant height of the transgenic rice overexpressing M. xanthus (MX) and A. thaliana (AP37) Protox genes at 43, 50, and 65 days after transplanting (DAT) was significantly lower than that of WT. Number of tiller of PX as well as MX and AP37 at 50 and 65 DAT was significantly lower than that of WT. At harvest time, culm length and yield of MX, PX and AP37 and rice straw weight of MX and AP37 were significantly low compared with WT. The reduction of yield in MX, PX, and AP37 was caused by spikelets per panicle and 1000 grain weight, ripened grain, spikelets per panicle, 1000 grain weight, and ripened grain, respectively. On the other hand, 135 the reduction of yield in MX, PX, and AP37 was also observed in another yearly variation experiment. The reduction of rice growth in MX, PX, and AP37 was observed in seedling stage as well as growth duration in field. There were no differences in tetrapyrrole intermediate Proto IX, Mg-Proto IX and Mg-Proto IX monomethyl ester, reactive oxygen species ($H_2O_2$ and ${O_2}^-$), MDA, antioxidative enzymes (SOD, CAT, POX, APX, and GR) and chlorophyll between transgenic lines and wild type, indicating that accumulated tetrapyrrole intermediate and other parameters were not related to growth reduction in transgenic rice. However, ALA synthesizing capacity in MX, PX, and AP37 at one day after exposure to light and 52 DAT was significantly lower than that of WT. Further study is required to elucidate the mechanisms underlying the growth and yield difference between transgenic and WT lines.

Effect of Different Fertilization on Physiological Characteristics and Growth Performances of Eucalyptus pellita and Acacia mangium in a Container Nursery System (시비처리가 Eucalyptus pellita와 Acacia mangium 용기묘의 생리 및 생장 특성에 미치는 영향)

  • Cho, Min-Seok;Lee, Soo-Won;Bae, Jong-Hyang;Park, Gwan-Soo
    • Journal of Bio-Environment Control
    • /
    • v.20 no.2
    • /
    • pp.123-133
    • /
    • 2011
  • The objective of this study was to find optimal nutrient condition of container seedling production of two tropical species for high seedling quality. This study was conducted to investigate photosynthesis, chlorophyll fluorescence, chlorophyll contents, and growth performances of container seedlings of Eucalyptus pellita and Acacia mangium growing under four different fertilization treatments (Con., $0.5\;g{\cdot}l^{-1}$, $1.0\;g{\cdot}l^{-1}$, and $2.0\;g{\cdot}l^{-1}$ fertilization). E. pellita showed outstanding photosynthetic capacity, photochemical efficiency, and chlorophyll contents at $1.0\;g{\cdot}l^{-1}$ fertilization. Meanwhile, E. pellita showed the highest photosynthetic capacity, photochemical efficiency, and chlorophyll contents at $2.0\;g{\cdot}l^{-1}$ fertilization, as fertilization rate were increased, those of A. mangium increased. Like physiological characteristics, Both E. pellita at $1.0\;g{\cdot}l^{-1}$ fertilization and A. mangium at $2.0\;g{\cdot}l^{-1}$ fertilization were higher root collar diameter, height, biomass, and seedling quality index than other treatments. These results showed that E. pellita at $1\;g{\cdot}l^{-1}$ fertilization and A. mangium at $2.0\;g{\cdot}l^{-1}$ fertilization is optimal nutrient condition, respectively. Moreover, fertilization rate controlling is very important for growth and seedling quality of container seedling.