Browse > Article
http://dx.doi.org/10.5352/JLS.2022.32.5.362

Authentication of Hempseed Oil from Different Commercial Oils Using Simple UV-Vis Spectrophotomety  

Lee, Yun-Jin (Department of Food and Nutrition, Andong National University)
Kang, Deok-Gyeong (Department of Food and Nutrition, Andong National University)
Kim, Young-Min (Hemp & R Bio)
Sohn, Ho-Yong (Department of Food and Nutrition, Andong National University)
Publication Information
Journal of Life Science / v.32, no.5, 2022 , pp. 362-367 More about this Journal
Abstract
Hempseed, a dehulled Cannabis fructus, has high nutraceutical potential. It has plenty of essential amino acids, vitamins, and essential polyunsaturated fatty acids, including α- and γ-linolenic acid. Increased exercise capacity, cognitive function, and ameliorative effects against hypercholesterolemia, neuro-inflammation, thrombus formation, and learning and memory impairment were reported in hemp-seed oil-administered models. Therefore, the market prices of hempseed oil are 45~140-fold higher than the other plant-derived oils, such as soy, corn, olive, canola, or linseed oil. In this study, instead of FTIR (Fourier Transform Infrared Spectroscopy) or FTIR-Raman spectroscopy, a simple UV-Vis spectrophotometry method was developed to authenticate the hempseed oil. Measurements of absorbance at 245, 305, and 415 nm of oils and calculations of 245/415 and 315/415 nm provided that the ratios of 245/415 and 315/415 nm of authentic hempseed oils were 12.9 and 9.6, respectively. The 245/415 and 315/415 nm of soy oil, corn oil, canola oil, and linseed oil were 35.4~61.8 and 29.7~50.8, respectively. This simple UV-Vis spectrophotometry method could also be applied to differentiate hempseed oil from blended oil products in markets.
Keywords
Authentication; blended oil; hempseed oil; UV-Vis spectrophotometry;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Lu, R. R., Qian, P., Sun, Z., Zhou, X. H., Chen, T. P., He, J. F., Zhang, H. and Wu, J. 2010. Hempseed protein derived antioxidative peptides: Purification, identification and protection from hydrogen peroxide-induced apoptosis in PC12 cells. Food Chem. 123, 1210-1218.   DOI
2 Callaway, J. C. 2004. Hempseed as a nutritional resource: An overview. J. Plant Breed. 140, 65-72.
3 Chen, N.Y., Liu, C. W., Lin, W., Ding, Y., Bian, Z., Huang, L., Huang, H., Yu, K. H., Chen, S. B., Sun, Y., Wei, L. P. and Pan, S. L. 2017. Extract of fructus cannabis ameliorates learning and memory impairment induced by D-galactose in an aging rats model. Evid. Based Complement. Alternat. Med. 2017, 1-13.
4 Chen, T., He, J., Zhang, J., Zhang, H., Qian, P., Hao, J. and Li, L. 2010. Analytical characterization of hempseed (Seed of Cannabis sativa L.) oil from eight regions in China. J. Diet. Suppl. 7, 117-129.   DOI
5 Han, G. S., Lee, S. M. and Shin, S. J. 2009. Densified pellet fuel using woody core of industrial hemp (Cannabis sativa L.) as an agricultural waste. Kor. J. Plant. Res. 22, 293-298.
6 Kim, J. N., Choi, J. Y., Seo, J. Y. and Choi, L. S. 2021. Neuroprotective effect of cannabidiol against hydrogen in hippocampal neuron culture. Cannabis Cannabinoid Res. 6, 40-47.   DOI
7 Korea Food Code. 2020. Ministry of Food and Drug Safety. No 2020-24, 115-120.
8 Moon, Y. H., Song, S. Y., Jeong, B. C. and Bang, J. K. 2005. Variation on fatty acid profile including γ-linolenic acid among hemp (Cannabis sativa L.) accessions. Kor. J. Med. Crop Sci. 13, 190-193.
9 Richard, M. N., Ganguly, R., Steigerwald, S. N., Al-khalfa, A. and Pierce, G. N. 2007. Dietary hempseed reduces platelet aggregation. J. Thromb. Haemost. 5, 424-425.   DOI
10 Bae, K. J., Song, M. Y., Choi, J. B. and Kim, S. J. 2015. Experimental study on the Cannabis fructus on exercise capacity and cognitive function in vascular dementia rat model. J. Kor. Med. Rehab. 25, 1-15.
11 Kang, D. G., Kim, Y. M. and Sohn, H. Y. 2021. Evaluation of anti-thrombosis activities of different parts of Cannabis sativa L. J. Life Sci. 31, 581-586.   DOI
12 Chen, T., He, J., Zhang, J., Li, X., Zhang, H., Hao, J. and Li, L. 2012. The isolation and identification of two compounds with predominant radical scavenging activity in hempseed (seed of Cannabis sativa L.). Food Chem. 134, 1030-1037.   DOI
13 Farinon, B., Molinari, R., Costantini, L. and Merendino, N. 2020. The seed of industrial hemp (Cannabis sativa L.): Nutritional quality and potential functionality for human health and nutrition. Nutrients 12, 1935.   DOI
14 Frassinetti, S., Moccia, E., Caltavuturo, L., Gabriele, M., Longo, V., Bellani, L., Giorgi, G. and Giorgetti, L. 2018. Nutraceutical potential of hemp (Cannabis sativa L.) seeds and sprouts. Food Chem. 262, 56-66.   DOI
15 Kaushal, N., Dhadwal, S. and Kaur, P. 2020. Ameliorative effects of hempseed (Cannabis sativa) against hypercholesterolemia associated cardiovascular changes. Nutr. Metab. Cardiovasc. Dis. 30, 330-338.   DOI
16 Kim, M. A., Yeom, Y. E., Kim, D. W., Kim, J. and Lee, C. M. 2019. Delayed volatilization of lavender essential oil using mesoporous silica nanoparticles. Polymer 43, 327-330.
17 Maggio, R. M., Cerretani, L., Chiavaro, E., Kaufman, T. S. and Bendini, A. 2010. A novel chemometric strategy for the estimation of extra virgin olive oil adulteration with edible oils. Food Control 21, 890-895.   DOI
18 Yang, H., Irudayaraj, J. and Paradkar, M. 2005. Discriminant analysis of edible oils and fats by FTIR, FT-NIR and FT-Raman spectroscopy. Food Chem. 93, 25-32.   DOI
19 Koh, D. H. 1990. A study on the composition of fatty acids of hempseed. Kor. J. Food Nutr. 3, 201-206.
20 Lee, W. H., Lim, H. M. and Kang, H. Y. 2015. The color change of Korean pine specimens oil-heat-treated at 180 and 200℃. J. Kor. Wood Sci. Tech. 43, 438-445.   DOI
21 Marzorati, S., Friscione, D. and Picchi, E. 2020. Cannabidiol from inflorescences of Cannabis sativa L.: Green extraction and purification processes. Ind. Crops Prod. 155, 112816.   DOI
22 Porto, C. D., Decorti, D. and Tubaro, F. 2012. Fatty acid composition and oxidation stability of hemp (Cannabis sativa L.) seed oil extracted by supercritical carbon dioxide. Ind. Crops Prod. 36, 401-404.   DOI
23 Pyo, S. J., Kim, J. S., Lee, D. H. and Sohn, H. Y. 2020. Absorbance as simple indicator for polyphenol content and antioxidant activity of honey. J. Life Sci. 30, 555-562.   DOI
24 Sohn, H. Y., Kim, M. N. and Kim, Y. M. 2021. Current status and prospects for the hemp bioindustry. J. Life Sci. 31, 677-685.   DOI
25 Ryz, N. R., Remillard, D. J. and Russo, E. B. 2017. Cannabis roots: A traditional therapy with future potential for treating inflammation and pain. Cannabis Cannabinoid Res. 2, 210-216.   DOI
26 Seo, J. H., Jeong, E. S., Lee, K. S., Heo, S. H., Jeong, D. G., Lee, S. J., Kim, E. S. and Choi, Y. K. 2012. Hempseed water extract ameliorates atherosclerosis in apolipo- protein E knockout mice. Food Sci. Biotechnol. 21, 927-932.   DOI
27 Socaciu, C., Fetea, F., Ranga, F., Bunea, A., Dulf, F., Socaci, S. and Pintea, A. 2020. Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR) coupled with chemometrics, to control the botanical authenticity and quality of cold-pressed functional oils com- mercialized in Romania. Appl. Sci. 10, 8695.   DOI
28 Zhou, Y., Wang, S., Lou, H. and Fan, P. 2018. Chemical constituents of hemp (Cannabis sativa L.) seed with potential anti-neuroinflammatory activity. Phytochem. Lett. 23, 57-61.   DOI
29 Smeriglio, A., Galati, E. M., Monforte, M. T., Lanuzza, F., D'Angelo, V. and Circosta, C. 2016. Polyphenolic com- pounds and antioxidant activity of cold-pressed seed oil from finola cultivar of Cannabis sativa L. Phytother. Res. 30, 1298-1307.   DOI
30 Li, Q., Chen, J., Huyan, Z., Kou, Y., Xu, L., Yu, X. and Gao, J. M. 2018. Application of Fourier transform infrared spectroscopy for the quality and safety analysis of fats and oils: A review. Crit. Rev. Food Sci. Nutr. 59, 3597-3611.   DOI