• Title/Summary/Keyword: Plant

Search Result 49,745, Processing Time 0.063 seconds

Update on the Effects of Sound Wave on Plants

  • Chowdhury, Md. Emran Khan;Lim, Hyoun-Sub;Bae, Hanhong
    • Research in Plant Disease
    • /
    • v.20 no.1
    • /
    • pp.1-7
    • /
    • 2014
  • Plant growth is considered the sum of cell proliferation and subsequent elongation of the cells. The continuous proliferation and elongation of plant cells are vital to the production of new organs, which have a significant impact on overall plant growth. Accordingly, the relationship between environmental stimuli, such as temperature, light, wind, and sound waves to plant growth is of great interest in studies of plant development. Sound waves can have negative or positive effects on plant growth. In this review paper we have summarized the relationship between sound waves and plant growth response. Sound waves with specific frequencies and intensities can have positive effects on various plant biological indices including seed germination, root elongation, plant height, callus growth, cell cycling, signaling transduction systems, enzymatic and hormonal activities, and gene expression.

The establishment of R&D management system for Gas Plant R&D Center (가스플랜트 사업단에서 연구관리스템 구축)

  • Hwang, Seong Ha;Yoo, Sun Il;Nam, Tae Hwan
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.4 no.1
    • /
    • pp.19-29
    • /
    • 2008
  • Traditionally gas plant R&D has had a world-wide weak position in terms of high technology. Especially System engineering did not exactly apply to gas plant construction. So, Gas Plant R&D Center is determined to make the establishment of the system engineering for the standard of gas plant. Gas Plant R&D Center has two projects. Firstly, the establishment of the R&D management system. Secondly, the system engineering which is included in the VE concept of EPC parts. But Gas Plant R&D Center exists in the particular conditions for successful development of the new process and core equipments. Now we will describe the establishment of R&D management system and particular conditions(Risk Conditions) for gas plant.

  • PDF

Roads to Construct and Re-build Plant Microbiota Community

  • Kim, Da-Ran;Kwak, Youn-Sig
    • The Plant Pathology Journal
    • /
    • v.38 no.5
    • /
    • pp.425-431
    • /
    • 2022
  • Plant microbiota has influenced plant growth and physiology significantly. Plant and plant-associated microbes have flexible interactions that respond to changes in environmental conditions. These interactions can be adjusted to suit the requirements of the microbial community or the host physiology. In addition, it can be modified to suit microbiota structure or fixed by the host condition. However, no technology is realized yet to control mechanically manipulated plant microbiota structure. Here, we review step-by-step plant-associated microbial partnership from plant growth-promoting rhizobacteria to the microbiota structural modulation. Glutamic acid enriched the population of Streptomyces, a specific taxon in anthosphere microbiota community. Additionally, the population density of the microbes in the rhizosphere was also a positive response to glutamic acid treatment. Although many types of research are conducted on the structural revealing of plant microbiota, these concepts need to be further understood as to how the plant microbiota clusters are controlled or modulated at the community level. This review suggests that the intrinsic level of glutamic acid in planta is associated with the microbiota composition that the external supply of the biostimulant can modulate.

The Relationship between the Sugar Preference of Bacterial Pathogens and Virulence on Plants

  • Ismaila Yakubu;Hyun Gi Kong
    • The Plant Pathology Journal
    • /
    • v.39 no.6
    • /
    • pp.529-537
    • /
    • 2023
  • Plant pathogenic bacteria colonize plant surfaces and inner tissues to acquire essential nutrients. Nonstructural sugars hold paramount significance among these nutrients, as they serve as pivotal carbon sources for bacterial sustenance. They obtain sugar from their host by diverting nonstructural carbohydrates en route to the sink or enzymatic breakdown of structural carbohydrates within plant tissues. Despite the prevalence of research in this domain, the area of sugar selectivity and preferences exhibited by plant pathogenic bacteria remains inadequately explored. Within this expository framework, our present review endeavors to elucidate the intricate variations characterizing the distribution of simple sugars within diverse plant tissues, thus influencing the virulence dynamics of plant pathogenic bacteria. Subsequently, we illustrate the apparent significance of comprehending the bacterial preference for specific sugars and sugar alcohols, postulating this insight as a promising avenue to deepen our comprehension of bacterial pathogenicity. This enriched understanding, in turn, stands to catalyze the development of more efficacious strategies for the mitigation of plant diseases instigated by bacterial pathogens.