• 제목/요약/키워드: Planning Method

검색결과 5,220건 처리시간 0.033초

분포 밀도를 이용한 이동 로봇의 최적 경로 (A Path Planning of Mobile Robot using Distribution Density)

  • 곽재혁;임준홍
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.520-522
    • /
    • 2004
  • In this paper, we propose the algorithm of path planning and obstacle avoidance for mobile robot. We call the proposed method Random Access Sequence(RAS) method. In the proposed method, a small region is set first and numbers are assigned to its neighbors, then the path is selected using these numbers. It has an advantage of fast planning and simple operation. This means that new path selection may be possible within short time and that helps a robot to avoid obstacle in any direction. When a robot meets moving obstacles, it avoids obstacles in a random direction. Sonar ranger is useful to get obstacle information and RAS may be a good solution for path planning.

  • PDF

이동로봇의 전역 경로계획에서 Self-organizing Feature Map의 이용 (The Using of Self-organizing Feature Map for Global Path Planning of Mobile Robot)

  • 차영엽;강현규
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.817-822
    • /
    • 2004
  • This paper provides a global path planning method using self-organizing feature map which is a method among a number of neural network. The self-organizing feature map uses a randomized small valued initial weight vectors, selects the neuron whose weight vector best matches input as the winning neuron, and trains the weight vectors such that neurons within the activity bubble are move toward the input vector. On the other hand, the modified method in this research uses a predetermined initial weight vectors, gives the systematic input vector whose position best matches obstacles, and trains the weight vectors such that neurons within the activity bubble are move toward the input vector. According to simulation results one can conclude that the modified neural network is useful tool for the global path planning problem of a mobile robot.

  • PDF

이동로봇의 전역 경로계획을 위한 Self-organizing Feature Map (Self-organizing Feature Map for Global Path Planning of Mobile Robot)

  • 정세미;차영엽
    • 한국정밀공학회지
    • /
    • 제23권3호
    • /
    • pp.94-101
    • /
    • 2006
  • A global path planning method using self-organizing feature map which is a method among a number of neural network is presented. The self-organizing feature map uses a randomized small valued initial weight vectors, selects the neuron whose weight vector best matches input as the winning neuron, and trains the weight vectors such that neurons within the activity bubble are moved toward the input vector On the other hand, the modified method in this research uses a predetermined initial weight vectors of 1-dimensional string and 2-dimensional mesh, gives the systematic input vector whose position best matches obstacles, and trains the weight vectors such that neurons within the activity bubble are moved toward the input vector. According to simulation results one can conclude that the modified neural network is useful tool for the global path planning problem of a mobile robot.

거주자참여방식을 적용한 공동주택의 실내공간계획에 관한 연구 (A Study on the Interior Space of Apartment Housing applying Resident's Participation Designing Method)

  • 박선희;문경하
    • 한국실내디자인학회논문집
    • /
    • 제25호
    • /
    • pp.68-76
    • /
    • 2000
  • The application of Residents Participation Designing Method is to provide the resident with a chance of either participating in the planning process of the house or selecting other possible options. The multi-household apartments have so far been grown in quantity by means of mass production and hence have contributed in elevating its supply. However, this manner of supplying has a tendency of ignoring much of the individuals concern regarding space planning And has therefore repeatedly standardized and stereotyped ground planning which only concerns its economic profit and effectiveness. As the standard of living and personal wealth have improved over the years, residents have come to demand a more futuristic model designed to satisfy the individuals personal taste and lifestyle. Therefore, the purpose of this study is to suggest the planning method of multi-household apartments to correspond to resident's specific demand.

  • PDF

시뮬레이션을 이용한 물류 배송계획 시스템 개발에 관한 연구 (Design of the Simulation-Based Vehicle Distribution Planning System for Logistics)

  • 양병희;이영해
    • 산업공학
    • /
    • 제7권2호
    • /
    • pp.87-97
    • /
    • 1994
  • Many vehicle routing methods have been suggested, which minimize the routing distances of vehicles to reduce the total transportation cost. But the more considerations the method takes, the higher complexites are involved in a large number of practical situations. The purpose of this paper is to develop a vehicle distribution planning system using heuristic algorithms and simulation techniques for home electronics companies. The vehicle distribution planning system developed by this study involves such complicated and stochastic conditions as one depot, multiple nodes(demand points), multiple vehicle types, multiple order items, and other many restrictions for operating vehicles. The proposed system is compared with the nearest neighbor method of the current system in terms of total logistics cost and driving time. This heuristics algorithm and simulation based distribution planning system is efficient in computational complexity, and give improved solutions with respect to the cost as well as the time. This method constructs a route with a minimum number of vehicles for a given demand.

  • PDF

Real-time Footstep Planning and Following for Navigation of Humanoid Robots

  • Hong, Young-Dae
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권5호
    • /
    • pp.2142-2148
    • /
    • 2015
  • This paper proposes novel real-time footstep planning and following methods for the navigation of humanoid robots. A footstep command is defined by a walking direction and step lengths for footstep planning. The walking direction is determined by a uni-vector field navigation method, and the allowable yawing range caused by hardware limitation is considered. The lateral step length is determined to avoid collisions between the two legs while walking. The sagittal step length is modified by a binary search algorithm when collision occurs between the robot body and obstacles in a narrow space. If the robot body still collides with obstacles despite the modification of the sagittal step length, the lateral step length is shifted at the next footstep. For footstep following, a walking pattern generator based on a 3-D linear inverted pendulum model is utilized, which can generate modifiable walking patterns using the zero-moment point variation scheme. Therefore, it enables a humanoid robot to follow the footstep command planned for each footstep. The effectiveness of the proposed method is verified through simulation and experiment.

영역 확장을 이용한 이동 로봇의 경로 설정 (Path Planning Algorithm for Mobile Robot using Region Extension)

  • 곽재혁;임준홍
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.249-251
    • /
    • 2005
  • In this paper, an algorithm of path planning and obstacle avoidance for mobile robot is proposed. We call the proposed method Random Access Sequence(RAS) method. In the proposed method, a small region is set first and numbers are assigned to its neighbors. By processing assigned numbers all regions are covered and then the path from start to destination is selected by these numbers. The RAS has an advantage of fast planning because of simple operations. This implies that new path selection may be possible within a short time and helps a robot to avoid obstacles in any direction. The algorithm can be applied to unknown environments. When moving obstacles appear, a mobile robot avoids obstacles reactively. then new path is selected by RAS.

  • PDF

Path Planning of Automated Optical Inspection Machines for PCB Assembly Systems

  • Park Tae-Hyoung;Kim Hwa-Jung;Kim Nam
    • International Journal of Control, Automation, and Systems
    • /
    • 제4권1호
    • /
    • pp.96-104
    • /
    • 2006
  • We propose a path planning method to improve the productivity of AOI (automated optical inspection) machines in PCB (printed circuit board) assembly lines. The path-planning problem is the optimization problem of finding inspection clusters and the visiting sequence of cameras to minimize the overall working time. A unified method is newly proposed to determine the inspection clusters and visiting sequence simultaneously. We apply a hybrid genetic algorithm to solve the highly complicated optimization problem. Comparative simulation results are presented to verify the usefulness of the proposed method.

Path Planning for Cleaning Robots: A Graph Model Approach

  • Yun, Sang-Hoon;Park, Se-Hun;Park, Byung-Jun;Lee, Yun-Jung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.120.3-120
    • /
    • 2001
  • We propose a new method of path planning for cleaning robots. Path planning problem for cleaning robots is different from conventional path planning problems in which finding a collision-free trajectory from a start point to a goal point is focused. In the case of cleaning robots, however, a planned path should cover all area to be cleaned. To resolve this problem in a systematic way, we propose a method based on a graph model as follows: at first, partition a given map into proper regions, then transform a divided region to a vertex and a connectivity between regions to an edge of a graph. Finally, a region is divided into sub-regions so that the graph has a unary tree which is the simplest Hamilton path. The effectiveness of the proposed method is shown by computer simulation results.

  • PDF

A New Technique to Escape Local Minimum in Artificial Potential Field Based Path Planning

  • Park, Min-Gyu;Lee, Min-Cheol
    • Journal of Mechanical Science and Technology
    • /
    • 제17권12호
    • /
    • pp.1876-1885
    • /
    • 2003
  • The artificial potential field (APF) methods provide simple and efficient motion planners for practical purposes. However, these methods have a local minimum problem, which can trap an object before reaching its goal. The local minimum problem is sometimes inevitable when an object moves in unknown environments, because the object cannot predict local minima before it detects obstacles forming the local minima. The avoidance of local minima has been an active research topic in the potential field based path planing. In this study, we propose a new concept using a virtual obstacle to escape local minima that occur in local path planning. A virtual obstacle is located around local minima to repel an object from local minima. We also propose the discrete modeling method for the modeling of arbitrary shaped objects used in this approach. This modeling method is adaptable for real-time path planning because it is reliable and provides lower complexity.