Path Planning of Automated Optical Inspection Machines for PCB Assembly Systems

  • Park Tae-Hyoung (School of Electrical and Computer Engineering, Chungbuk National University) ;
  • Kim Hwa-Jung (R&D Center, KEC Mechatronics Co., Ltd.) ;
  • Kim Nam (School of Electrical and Computer Engineering, Chungbuk National University)
  • Published : 2006.02.01

Abstract

We propose a path planning method to improve the productivity of AOI (automated optical inspection) machines in PCB (printed circuit board) assembly lines. The path-planning problem is the optimization problem of finding inspection clusters and the visiting sequence of cameras to minimize the overall working time. A unified method is newly proposed to determine the inspection clusters and visiting sequence simultaneously. We apply a hybrid genetic algorithm to solve the highly complicated optimization problem. Comparative simulation results are presented to verify the usefulness of the proposed method.

Keywords

References

  1. T. S. Newman and A. K. Jain, 'A survey of automated visual inspection,' Computer Vision and Image Understanding, vol. 61, no. 2, pp. 231-261, 1995 https://doi.org/10.1006/cviu.1995.1017
  2. Y. Hara, N. Akiyama, and K. Karasaki, 'Automatic inspection system for printed circuit boards,' IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. PAMI-5, no. 6, pp. 623-630, 1983 https://doi.org/10.1109/TPAMI.1983.4767453
  3. H. H. Loh and M. S. Lu, 'Printed circuit board inspection using image analysis,' IEEE Trans. on Industry Applications, vol. 35, no. 2, pp. 426-432, 1999 https://doi.org/10.1109/28.753638
  4. A. K. Jain, M. N. Murty, and P. J. Flynn, 'Data clustering: A review,' ACM Computing Surveys, vol. 31, no. 3, pp. 264-323, 1999 https://doi.org/10.1145/331499.331504
  5. B. S. Everitt, S. Landau, and M. Leese, Cluster Analysis, Fourth Edition, Arnold, 2001
  6. G. Reinelt, The Traveling Salesman: Computational Solutions for TSP Applications, Springer-Verlag, 1994
  7. M. Bellmore and G. Nemhauser, 'The travelingsalesman problem: A survey,' Operation Research, vol. 16, pp. 538-558, 1968 https://doi.org/10.1287/opre.16.3.538
  8. E. Dahlhaus, 'Fast parallel algorithm for the single link heuristics of hierarchical clustering,' IEEE Symposium on Parallel and Distributed Processing, vol. 1, no. 4, pp. 184 -187, 1992
  9. T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman, and A. Y. Wu, 'An efficient k-means clustering algorithm: Analysis and implementation,' IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 24, pp. 881-892, 2002 https://doi.org/10.1109/TPAMI.2002.1017616
  10. Z. Michalewicz, Genetic Algorithms+Data Structures=Evolution Programs, Springer-Verlag, 1996
  11. L. Y. Tseng and S. B. Yang, 'A genetic approach to the automatic clustering problem,' Pattern Recognition, vol. 34, pp. 415-424, 2001 https://doi.org/10.1016/S0031-3203(00)00005-4
  12. H. S. Kim and S. B. Cho, 'An efficient genetic algorithm with less fitness evaluation by clustering,' IEEE Trans. on Evolutionary Computation, vol. 2, pp. 887-894, 2001
  13. J. Gu, 'Efficient local search with search space smoothing: A case study of the traveling salesman problem,' IEEE Trans. on Systems, Man and Cybernetics, vol. 24, no. 5, pp. 728-735, 1994 https://doi.org/10.1109/21.293486
  14. R. Baraglia, J. I. Hidalgo, and R. Perego, 'A hybrid heuristic for the traveling salesman problem,' IEEE Trans. on Evolutionary Computation, vol. 5, no. 6, pp. 613-622, 2001 https://doi.org/10.1109/4235.974843
  15. Samsung Techwin Co., LTD, 'SMT Inspection equipment - AI400,' http://www.samsungtechwin.com