• Title/Summary/Keyword: Planning CT

Search Result 465, Processing Time 0.024 seconds

Atypical Patterns of Deep Inferior Epigastric Artery: Clinical Implication of Preoperative CT Angiography (비전형적인 심하복벽동맥의 주행을 파악하기 위한 수술 전 CT Angiography의 유용성)

  • Lee, Taek-Jong;Kim, Sung-Chan;Eom, Jin-Sup;Kim, Eun-Key
    • Archives of Reconstructive Microsurgery
    • /
    • v.21 no.1
    • /
    • pp.8-13
    • /
    • 2012
  • Purpose: Purpose: The free deep inferior epigastric artery perforator (DIEP) flap is a popular option for autologous breast reconstruction. However, the anatomy of the deep inferior epigastric artery(DIEA) may vary from one individual to another. Unexpected vascular anomaly can confuse the surgeon and affects on the safety of the free DIEP flap. Materials and Methods: Thirty five consecutive patients who underwent free DIEP/TRAM flap for immediate breast reconstruction between Mar. 2010 and Oct. 2010 were enrolled in this study. Computed tomography angiography (CT angiography) of abdomen was evaluated part of our standard preoperative assessment: atypical patterns of DIEA/DIEP were evaluated by preoperative CT angiography and compared with intraoperative finding. Results: Atypical patterns of DIEA/DIEP which may affect preoperative planning were noted as the following: Circummusclar/subfascial DIEA (n=1), DIEA running underneath rectus muscle (n=8), septocutaneous perforator (n=3), peritoneo-cutaneous perforator (n=1), a large branch going into peritoneum (n=1), and very early division and muscle penetration of DIEA (n=1). Conclusion: Atypical DIEA/DIEP that might change the operation plan is not rare, so the individualized planning based on the preoperative CT angiography is recommended. Preoperative CT angiography could help to select reliable and easy-to-dissect perforator in free DIEP/TRAM breast reconstruction.

  • PDF

Development of a Brain Phantom for Multimodal Image Registration in Radiotherapy Treatment Planning

  • H. S. Jin;T. S. Suh;R. H. Juh;J. Y. Song;C. B. Y. Choe;Lee, H .G.;C. Kwark
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.450-453
    • /
    • 2002
  • In radiotherapy treatment planning, it is critical to deliver the radiation dose to tumor and protect surrounding normal tissue. Recent developments in functional imaging and radiotherapy treatment technology have been raising chances to control tumor saving normal tissues. A brain phantom which could be used for image registration technique of CT-MR and CT-SPECT images using surface matching was developed. The brain phantom was specially designed to obtain imaging dataset of CT, MR, and SPECT. The phantom had an external frame with 4 N-shaped pipes filled with acryl rods, Pb rods for CT, MR, and SPECT imaging, respectively. 8 acrylic pipes were inserted into the empty space of the brain phantom to be imaged for geometric evaluation of the matching. For an optimization algorithm of image registration, we used Downhill simplex algorithm suggested as a fast surface matching algorithm. Accuracy of image fusion was assessed by the comparison between the center points of the section of N-shaped bars in the external frame and the inserted pipes of the phantom and minimized cost functions of the optimization algorithm. Technique with partially transparent, mixed images using color on gray was used for visual assessment of the image registration process. The errors of image registration of CT-MR and CT-SPECT were within 2mm and 4mm, respectively. Since these errors were considered within a reasonable margin from the phantom study, the phantom is expected to be used for conventional image registration between multimodal image datasets..

  • PDF

Determination of Tumor Volume in PET for the Radiation Treatment Planning: Computer Simulation (방사선치료계획을 위한 PET 종양용적 결정 연구: 컴퓨터 모의실험)

  • Yoon Seok Nam;Joh Chul-Woo;Lee Jae Sung
    • Progress in Medical Physics
    • /
    • v.16 no.4
    • /
    • pp.183-191
    • /
    • 2005
  • The utilization of PET has been increased so fast since the usefulness of the PET has been proved in various clinical and research fields. Among the many applications, the PET Is especially useful in oncology and most of the clinical PET scans are peformed for the oncologic examination Including the different diagnosis of malignant and benign tumors and assessment of the treatment effects and recurrent tumors. As the PET-CT scanners are widely available, there is Increasing interest in the application of the PET Images to the radiation treatment planning. Although the CT images are conventionally used for the target volume determination in the radiation treatment planning, there are fundamental limitation In use of only the anatomical information. Therefore, the volume determination of the functionally active tumor region using the PET would be important for the treatment planning. However, the accurate determination of the tumor boundary is not simple in PET due to the relatively low spatial resolution of the currently available PET scanners. In this study, computer simulations were peformed to study the relationship between the lesion size, PET resolution, lesion to background ratio and the threshold of Image Intensity to determine the true tumor volume.

  • PDF

Evaluation of Every Other Day - Cone Beam Computed Tomography in Image Guided Radiation Therapy for Prostate Cancer (전립선암의 영상유도방사선치료 시 격일 콘빔 CT 적용의 유용성 평가)

  • Park, Byoung Suk;Ahn, Jong Ho;Kim, Jong Sik;Song, Ki Won
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.2
    • /
    • pp.289-295
    • /
    • 2014
  • Purpose : Cone Beam Computed Tomography(CBCT) in Image Guided Radiation Therapy(IGRT), Set-up error can be reduced but exposure dose of the patient due to CBCT will increase. Through this study, we are to evaluate by making a scenario with the implementation period of CBCT as every other day. Materials and Methods : Of prostate cancer patients, 9 patients who got a Intensity Modulated Radiation Therapy(IMRT) with CBCT in IGRT were analyzed. Based on values corrected by analyzing set-up error by using CBCT every day during actual treatment, we created a scenario that conducts CBCT every other day. After applying set-up error values of the day not performing CBCT in the scenario to the treatment planning system(Pinnacle 9.2, Philips, USA) by moving them from the treatment iso-center during actual treatment, we established re-treatment plan under the same conditions as actual treatment. Based on this, the dose distribution of normal organs and Planning Target Volume(PTV) was compared and analyzed. Results : In the scenario that performs CBCT every other day based on set-up error values when conducting CBCT every day, average X-axis : $0.2{\pm}0.73mm$, Y-axis : $0.1{\pm}0.58mm$, Z-axis : $-1.3{\pm}1.17mm$ difference was shown. This was applied to the treatment planning to establish re-treatment plan and dose distribution was evaluated and as a result, Dmean : -0.17 Gy, D99% : -0.71 Gy of PTV difference was shown in comparison with the result obtained when carrying out CBCT every day. As for normal organs, V66 : 1.55% of rectal wall, V66 : -0.76% of bladder difference was shown. Conclusion : In case of a CBCT perform every other day could reduce exposure dose and additional treatment time. And it is thought to be able to consider the application depending on the condition of the patient because the difference in the dose distribution of normal organs, PTV is not large.

Verification of Radiation Therapy Planning Dose Based on Electron Density Correction of CT Number: XiO Experiments (컴퓨터영상의 전자밀도보정에 근거한 치료선량확인: XiO 실험)

  • Choi Tae-Jin;Kim Jin-Hee;Kim Ok-Bae
    • Progress in Medical Physics
    • /
    • v.17 no.2
    • /
    • pp.105-113
    • /
    • 2006
  • This study peformed to confirm the corrected dose In different electron density materials using the superposition/FFT convolution method in radiotherapy Planning system. The experiments of the $K_2HPO_4$ diluted solution for bone substitute, Cork for lung and n-Glucose for soft tissue are very close to effective atomic number of tissue materials. The image data acquisited from the 110 KVp and 130 KVp CT scanner (Siemes, Singo emotions). The electron density was derived from the CT number (H) and adapted to planning system (Xio, CMS) for heterogeneity correction. The heterogeneity tissue phantom used for measurement dose comparison to that of delivered computer planning system. In the results, this investigations showed the CT number is highly affected in photoelectric effect in high Z materials. The electron density in a given energy spectrum showed the relation of first order as a function of H in soft tissue and bone materials, respectively. In our experiments, the ratio of electron density as a function of H was obtained the 0.001026H+1.00 in soft tissue and 0.000304H+1.07 for bone at 130 KVp spectrum and showed 0.000274H+1.10 for bone tissue in low 110 KVp. This experiments of electron density calibrations from CT number used to decide depth and length of photon transportation. The Computed superposition and FFT convolution dose showed very close to measurements within 1.0% discrepancy in homogeneous phantom for 6 and 15 MV X rays, but it showed -5.0% large discrepancy in FFT convolution for bone tissue correction of 6 MV X rays. In this experiments, the evaluated doses showed acceptable discrepancy within -1.2% of average for lung and -2.9% for bone equivalent materials with superposition method in 6 MV X rays. However the FFT convolution method showed more a large discrepancy than superposition in the low electron density medium in 6 and 15 MV X rays. As the CT number depends on energy spectrum of X rays, it should be confirm gradient of function of CT number-electron density regularly.

  • PDF

The Dependence of CT Scanning Parameters on CT Number to Physical Density Conversion for CT Image Based Radiation Treatment Planning System (CT 영상기반 방사선치료계획시스템을 위한 CT수 대 물리적 밀도 변환에 관한 CT 스캐닝 매개변수의 의존성)

  • Baek, Min Gyu;Kim, Jong Eon
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.6
    • /
    • pp.501-508
    • /
    • 2017
  • The dependence of CT scanning parameters on the CT number to physical density conversion from the CT image of CT and CBCT electron density phantom acquired by the CT scanner using in radiotherapy were analyzed by experiment. The CT numbers were independent of the tube current product exposure time, slice thickness, filter of image reconstruction, field of view and volume of phantom. But the CT numbers were dependent on the tube voltage and cross section of phantom. As a result, for physical density range above 0, the maximum CT number difference observed at the tube voltage between 90 and 120 kVp was 27%, and the maximum CT number difference observed between CT body and head electron density phantom was 15%.

A Customized Cancer Radiation Treatment Planning Simulation (ccRTPs) System via Web and Network (웹과 네트워크 기술을 이용한 환자 맞춤식 암치료 계획 시뮬레이션 시스템)

  • Khm, O-Yeon
    • Progress in Medical Physics
    • /
    • v.17 no.3
    • /
    • pp.144-152
    • /
    • 2006
  • The telemedicine using independent client-server system via networks can provide high quality normalized services to many hospitals, specifically to local/rural area hospitals. This will eventually lead to a decreased medical cost because the centralized institute can handle big computer hardware systems and complicated software systems efficiently and economically, Customized cancer radiation treatment planning for each patient Is very useful for both a patient and a doctor because it makes possible for the most effective treatment with the least possible dose to patient. Radiation planners know that too small a dose to the tumor can result in recurrence of the cancer, while too large a dose to healthy tissue can cause complications or even death. The best solution is to build an accurate planning simulation system to provide better treatment strategies based on each patient's computerized tomography (CT) image. We are developing a web-based and a network-based customized cancer radiation therapy simulation system consisting of four Important computer codes; a CT managing code for preparing the patients target data from their CT image files, a parallel Monte Carlo high-energy beam code (PMCEPT code) for calculating doses against the target generated from the patient CT image, a parallel linear programming code for optimizing the treatment plan, and scientific data visualization code for efficient pre/post evaluation of the results. The whole softwares will run on a high performance Beowulf PC cluster of about 100-200 CPUs. Efficient management of the hardware and software systems is not an easy task for a hospital. Therefore, we integrated our system into the client-sewer system via network or web and provide high quality normalized services to many hospitals. Seamless communication with doctors is maintained via messenger function of the server-client system.

  • PDF

Comparison of 2D and 3D Brachytherapy Planning for Cervical Cancer (자궁경부암 근접방사선치료 시 2차원, 3차원 치료계획 비교평가)

  • Kim, Jung Hoon
    • Journal of radiological science and technology
    • /
    • v.40 no.2
    • /
    • pp.303-309
    • /
    • 2017
  • To evaluate the usefulness of 3-dimensional brachytherapy(BT) planning technique based on CT in cervical cancer. Patients with cervical cancer underwent 2-D BT treatment planning and then CT scan with HDR intracavitary applicators in place with same positions. Dose was prescribed to Point A with 5Gy per fraction on 2-D BT planning. For 3-D BT planning, and dose was prescribed to the High risk CTV for BT (HR CTV) with 5Gy. The 3-D BT planning goal was to cover at least 90% of the HR CTV with target 5Gy isodose surface while limiting the dose to $2cm^3$ of bladder to less than 7.5 Gy, and $2cm^3$ of rectum to less than 5Gy. In one patient of 10 patients, $D_{2cm3}$ of rectal dose was over 5Gy and 6patients at $D_{2cm3}$ of bladder dose on 2-D BT planning. There was a tendency to underestimate ICRU bladder dose than ICRU rectal dose. CT based 3-D BT planning for cervical cancer will enable evaluation of dose distributions for tumor and critical organs at risk. So, rectal and bladder morbidity as well as geographic miss will be reduced in case of the bulky disease or uterine malposition.

Comparison of CT based-CTV plan and CT based-ICRU38 plan in brachytherapy planning of uterine cervix cancer (자궁경부암 강내조사 시 CT를 이용한 CTV에 근거한 치료계획과 ICRU 38에 근거할 치료계획의 비교)

  • Shim JinSup;Jo JungKun;Si ChangKeun;Lee KiHo;Lee DuHyun;Choi KyeSuk
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.16 no.2
    • /
    • pp.9-17
    • /
    • 2004
  • Purpose : Although Improve of CT, MRI Radio-diagnosis and Radiation Therapy Planing, but we still use ICRU38 Planning system(2D film-based) broadly. 3-Dimensional ICR plan(CT image based) is not only offer tumor and normal tissue dose but also support DVH information. On this study, we plan irradiation-goal dose on CTV(CTV plan) and irradiation-goal dose on ICRU 38 point(ICRU38 plan) by use CT image. And compare with tumor-dose, rectal-dose, bladder-dose on both planning, and analysis DVH Method and Material : Sample 11 patients who treated by Ir-192 HDR. After 40Gy external radiation therapy, ICR plan established. All the patients carry out CT-image scanned by CT-simulator. And we use PLATO(Nucletron) v.14.2 planing system. We draw CTV, rectum, bladder on the CT image. And establish plan irradiation-$100\%$ dose on CTV(CTV plan) and irradiation-$100\%$ dose on A-point(ICRU38 plan) Result : CTV volume($average{\pm}SD$) is $21.8{\pm}26.6cm^3$, rectum volume($average{\pm}SD$) is $60.9{\pm}25.0cm^3$, bladder volume($average{\pm}SD$) is $116.1{\pm}40.1cm^3$ sampled 11 patients. The volume including $100\%$ dose is $126.7{\pm}18.9cm^3$ on ICRU plan and $98.2{\pm}74.5cm^3$ on CTV plan. On ICRU planning, the other one's $22.0cm^3$ CTV volume who residual tumor size excess 4cm is not including $100\%$ isodose. 8 patient's $12.9{\pm}5.9cm^3$ tumor volume who residual tumor size belows 4cm irradiated $100\%$ dose. Bladder dose(recommended by ICRU 38) is $90.1{\pm}21.3\%$ on ICRU plan, $68.7{\pm}26.6\%$ on CTV plan, and rectal dose is $86.4{\pm}18.3\%,\;76.9{\pm}15.6\%$. Bladder and Rectum maximum dose is $137.2{\pm}50.1\%,\;101.1{\pm}41.8\%$ on ICRU plan, $107.6{\pm}47.9\%,\;86.9{\pm}30.8\%$ on CTV plan. Therefore CTV plan more less normal issue-irradiated dose than ICRU plan. But one patient case who residual tumor size excess 4cm, Normal tissue dose more higher than critical dose remarkably on CTV plan. $80\%$over-Irradiated rectal dose(V80rec) is $1.8{\pm}2.4cm^3$ on ICRU plan, $0.7{\pm}1.0cm^3$ on CTV plan. $80\%$over-Irradiated bladder dose(V80bla) is $12.2{\pm}8.9cm^3$ on ICRU plan, $3.5{\pm}4.1cm^3$ on CTV plan. Likewise, CTV plan more less irradiated normal tissue than ICRU38 plan. Conclusion : Although, prove effect and stability about previous ICRU plan, if we use CTV plan by CT image, we will reduce normal tissue dose and irradiated goal-dose at residual tumor on small residual tumor case. But bigger residual tumor case, we need more research about effective 3D-planning.

  • PDF

Customized Model Manufacturing for Patients with Pelvic Fracture using FDM 3D Printer (FDM 방식의 3D 프린터를 이용한 골반 골절 환자의 맞춤형 모델제작)

  • Oh, Wang-Kyun
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.11
    • /
    • pp.370-377
    • /
    • 2014
  • At present trend 3D Printing technology has been using more efficiently than conventional subtractive manufacturing method in various medical fields, in particular this technology superior in saving production time, cost and process than conventional. Especially in orthopedics, an attractive attention has been paid by adopting this technology because of improving operation, operation accuracy, and reducing the patient's pain. Though 3D printing technology has enormous applications still in some hospitals have not been using due to having the problem of technical utilization of hardware, software & chiefly financial availability and etc. In order to solve these problems by reducing the cost and time, we have used CT images in pre-operative planning by directly making the pelvic fracture model with open source DICOM viewer and STL file conversion program, assembly 3D printer of FDM wire additive manufacturing. After having the customized bone model of six patients who underwent unstable pelvic fracture surgery, we have operated our system in orthopedic section of University Hospital through the clinician. Later, we have received better reviews and comments on utilization availability, results, and precision and now our system considered to be useful in surgical planning.