• Title/Summary/Keyword: Planing process

Search Result 95, Processing Time 0.029 seconds

The Die Development of REF SILL OTR-R/L Auto-Body Panel by using Forming Analysis (성형해석을 통한 REF SILL OTR-R/L 차체판넬 금형개발)

  • Jung, D.W.;Lee, C.H.;Moon, W.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.06a
    • /
    • pp.81-85
    • /
    • 2006
  • The characteristic of sheet metal process is the few loss of material during process, the short processing time and the excellent price and strength. The sheet metal process with above characteristic is common used in industrial field, but in order to analysis irregular field problems the reliable and economical analysis method is demanded. Finite element method is very effective method to simulate the forming processes with good prediction of the deformation behaviour. Among Finite element method, The static-implicit finite element method is applied effectively to analyze real-size auto-body panel stamping processes, which include the forming stage. In this paper, it was focussed on the drawability factors on auto-body panel stamping by AUTOFORM with using tool planing alloy to reduce law price as well as high precision from Design Optimization of die. According to this study, the results of simulation will give engineers good information to access the Design Optimization of die.

  • PDF

Clinical Evaluation of Tooth Mobility Following Root Planing and Flap Operation (치근활택술과 치은박리소파술 후 치아동요도 변화에 관한 연구)

  • Pang, Eun-Kyoung;Chai, Jung-Kiu;Kim, Chong-Kwan;Cho, Kyoo-Sung
    • Journal of Periodontal and Implant Science
    • /
    • v.29 no.4
    • /
    • pp.893-914
    • /
    • 1999
  • Tooth mobility may be the decisive factor that determines whether dental treatment of any kind is undertaken. Although tooth mobility in isolation says little in itself, the finding of increased tooth mobility is of both diagnostic and prognostic importance. Only the detection of an increase or decrease in mobility makes an evaluation possible. Thus prior to treatment, we must understand the pathologic process causing the observed the tooth mobility and decide whether the pattern and degree of observed tooth mobility is reversible or irreversible. And then it must be decided whether retention and treatment or extraction and replacement. The purpose of this study was to compare tooth mobility at different time period during root planing and flap operation and to relate changes in mobility to each treatment method. Twenty-one patients (287 teeth) with chronic adult periodontitis were treated with root planing(control group) and flap operation(experimental group), and each group was divided 3 subgroups based upon initial probing pocket depth (1-3mm, 4-6mm, 7mm and more). Tooth mobility was measured with $Periotest^{(R)}$ at the day of operation, 4 days, 1 week, 2 weeks, 3 weeks, 4 weeks, 8 weeks, 12 weeks after each treatment. Tooth mobility, attachment loss, radiographic bone loss, and bleeding on probing were measured at the day of operation, 4 weeks, 8 weeks and 12 weeks after treatment. 1. In group initial probing depth was 1-3mm, tooth mobility had no significant difference after root planing and flap operation. 2 . In group initial probing depth was 4-6mm, 7mm and more, tooth mobility had decreased in 12 weeks after root planing(p<0.01). And the mobility had increased after flap operation(p<0.01) and was at peak in 1 week, and decreased at initial level in 4 weeks, below the initial level in 12 weeks(p<0.01). 3. In 1 week, significant difference in tooth mobility between control and experimental group was found(p<0.01) but, in 12 weeks no difference between two groups was found. 4. Change of immediate tooth mobility after treatment was more larger in deep pocket than in shallow one. In group with the same probing pocket depth, the change of tooth mobility in molar group was greater than that of premolar group. 5. Tooth mobility before treatment was more strongly correlated with radiographic bone loss (r=0.5325) than probing depth, attachment loss and bleeding on probing, in 12 weeks after treatment, was more strongly correlated with attachment loss($r^2$=0.4761) than probing depth and bleeding on probing. Evaluation of the treatment effect and the prognosis after root planing and flap operation were meaningful on tooth initial probing depth 4mm and more. After flap operation, evaluation of the prognosis should be performed at least in 4 weeks and in 12 weeks after treatment, no difference in tooth mobility between two groups was observed. Radiographic bone loss and attachment loss were good clinical indicators to evaluate tooth mobility.

  • PDF

A Study of Selecting Material for Forming Analysis in Auto-Body Panel Stamping Process (차체판넬 스템핑공정에서 성형해석을 통한 재질선택에 관한 연구)

  • Hwang Jae Sin;Moon Won Sub;Lee Chan Ho;You Ho Young;Jung Dong Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.3 s.234
    • /
    • pp.484-494
    • /
    • 2005
  • Finite element method is very effective method to simulate the forming processes with good prediction of the deformation behaviour. For the finite element modeling of sheet mental forming the accurate tool model is required. Due to the geometrical complexity of real-size part stamping tools it is hard to make FE model for real-size auto-body stamping parts. In this paper, it was focussed on the drawability factors on auto-body panel stamping by AUTOFORM with using tool planing alloy to reduce law price as well as high precision from Design Optimization of die. According to this study, the results of simulation will give engineers good information to access the Design Optimization of die.

A Study of tool planning for forming analysis in REE SILL OTR-R/L Auto-Body Panel stamping process (REF SILL OTR-R/L 차체판넬 스템핑 공정에서 성형해석을 통한 공법개발에 관한 연구)

  • Hwang J. S.;Jung D. W.;Ahn B. I.;Mun W. S.;Park Y. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.138-141
    • /
    • 2004
  • Finite element method is very effective method to simulate the forming processes with good prediction of the deformation behaviour. For the finite element modeling of sheet mental forming the accurate tool model is required. Due to the geometrical complexity of real-size part stamping tools it is hard to make FE model for real-size auto-body stamping parts. In this paper, it was focussed on the drawability factors on auto-body panel stamping by AUTOFORM with using tool planing alloy to reduce law price as well as high precision from Design Optimization of die. According to this study, the results of simulation will give engineers good information to access the Design Optimization of die.

  • PDF

A Genetic Algorithm A, pp.oach for Process Plan Selection on the CAPP (CAPP에서 공정계획 선정을 위한 유전 알고리즘 접근)

  • 문치웅;김형수;이상준
    • Journal of Intelligence and Information Systems
    • /
    • v.4 no.1
    • /
    • pp.1-10
    • /
    • 1998
  • Process planning is a very complex task and requires the dynamic informatioon of shop foor and market situations. Process plan selection is one of the main problems in the process planning. In this paper, we propose a new process plan selection model considering operation flexibility for the computer aided process planing. The model is formulated as a 0-1 integer programming considering realistic shop factors such as production volume, machining time, machine capacity, transportation time and capacity of tractors such as production volume, machining time, machine capacity, transportation time capacity of transfer device. The objective of the model is to minimize the sum of the processing and transportation time for all parts. A genetic algorithm a, pp.oach is developed to solve the model. The efficiency of the proposed a, pp.oach is verified with numerical examples.

  • PDF

An Integrated System of Process Planning/Scheduling for Minimizing Makespan (Makespan 최소화를 위한 공정계획/일정계획 통합 시스템)

  • Kim, Ki-Dong
    • Journal of Industrial Technology
    • /
    • v.18
    • /
    • pp.139-148
    • /
    • 1998
  • Traditionally, the problems of manufacturing technology and manufacturing management have been treated independently. In this research, we endeavor to integrate the process planning and scheduling activities as an attempt to integrate the two realms. To draw up a plan of process planning and scheduling in real manufacturing environment is not an easy task because available time to plan could be limited and the shop status could change frequently. So we propose an architecture of integrated process planing and scheduling problem within the allowed time even if sheep situations change rather frequently. We argue that we can obtain a better and practical scheduling solution by dynamically changing the processing machines and operations as the shop condition changes. The proposed system takes the initial information for alternative machines and operations represented by an AND/OR graph as its input. Other informational inputs to the system are part order and shop statues. The system then generates new process plan and schedules during permitted time. Experimental results show that the proposed scheme provides a viable solution for real world scheduling problems.

  • PDF

Study on Process Monitoring of Elliptical Vibration Cutting by Utilizing Internal Data in Ultrasonic Elliptical Vibration Device

  • Jung, Hongjin;Hayasaka, Takehiro;Shamoto, Eiji
    • International Journal of Precision Engineering and Manufacturing-Green Technology
    • /
    • v.5 no.5
    • /
    • pp.571-581
    • /
    • 2018
  • In the present study, monitoring of elliptical vibration cutting process by utilizing internal data in the ultrasonic elliptical vibration device without external sensors such as a dynamometer and displacement sensor is investigated. The internal data utilized here is the change of excitation frequency, i.e. resonant frequency of the device, voltages applied to the piezoelectric actuators composing the device, and electric currents flowing through the actuators. These internal data change automatically in the elliptical vibration control system in order to keep a constant elliptical vibration against the change of the cutting process. Correlativity between the process and the internal data is described by using a vibration model of ultrasonic elliptical vibration cutting and verified by several experiments, i.e. planing and mirror surface finishing of hardened die steel carried out with single crystalline diamond tools. As a result, it is proved that it is possible to estimate the elements of elliptical vibration cutting process, e.g. tool wear and machining load, which are important for stable cutting in such precision machining.

Comparison of Mechanical Properties and Microstructural Charateristies of Tandem GMAW Weld Metal in 490MPa Grade Steel (490MPa급 고장력강 탄뎀 가스메탈아크 용접부에 대한 기계적 성질과 미세조직 비교)

  • Yi, Hui-Jun;Kang, Sung-Soo;Yu, Gum-Bin;Bae, Won-Hak;Moon, Hyun-Soo
    • Journal of Welding and Joining
    • /
    • v.27 no.2
    • /
    • pp.76-81
    • /
    • 2009
  • Tandem GMAW is one of the high performance welding process and used in many industries to increase the productivity. An evaluation is presented of the mechanical properties and microstructural characteristics of the Tandem GMAW and conventional Single GMAW welds in 30mm thickness 490MPa grade steel by comparison method. Welding sequence and bead with and hight was kept, avoiding the effect of the bead shape and welding sequence. Tension, bending, hardness and Charpy impact test results of Tandem GMAW met the requirement of specification and showed similar distribution with conventional Single GMAW. Volume fraction of ferrite phase in weld metal showed little difference between Tandem GMAW and Single GMAW

Study of Configuration Management Using Se Tool (SE 전산지원도구를 이용한 형상관리 방안 연구)

  • Park, Jong-Sun
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.7 no.1
    • /
    • pp.53-56
    • /
    • 2011
  • Configuration management plays a key role in systems engineering process for any project from earlier stage of development. It consists of five major activities, ie., configuration management planing, configuration identification, configuration control, configuration status accounting and configuration verification and audit, and is essential to control system design, development and operation throughout entire life cycle of the system development. And it is directly associated with other part of systems engineering management process, ie., technical data management which provides traceability of important decisions and changes during development. In this paper, we describe how to apply CASE(Computer-aided Systems Engineering) tool-Cradle for the configuration management to achieve effectiveness of Technical Management process.

Optimal Selection of Process Plan to Minimize Total Cost in Automated Manufacturing Systems (자동생산시스템에서 총비용을 최소로 하는 가공방법의 선택문제)

  • 박수관;이근희
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.15 no.25
    • /
    • pp.41-51
    • /
    • 1992
  • Most of the planing models for automated manufacturing systems are based on the assumption that for each part there is only one process method available Really. for a part to be manufactured in an automated manufacturing system, a number of different process methods can be generated, each of which may require specific types of tools and auxiliary devices such as fixtures, grippers and feeders. In this paper, An optimal algorithm for the selection of a set of process methods with the minimum corresponding manufacturing cost and minimal number of tools and auxiliary devices Is proposed. The proposed optimal algorithm is based on branch and bound method which is one of the optimal solution methods.

  • PDF