• Title/Summary/Keyword: Planform Design Optimization

Search Result 16, Processing Time 0.023 seconds

BLADE PLANFORM OPTIMIZATION FOR HSI NOISE REDUCTION OF HELICOPTER (헬리콥터의 고속충격소음 감소를 위한 블레이드 평면형상 최적화)

  • Chae, Sang-Hyun;Yang, Choong-Mo;Jung, Shin-Kyu;Aoyama, Takashi;Obayashi, Shigeru;Yee, Kwang-Jung
    • Journal of computational fluids engineering
    • /
    • v.14 no.1
    • /
    • pp.53-61
    • /
    • 2009
  • The objective of this research is to design blade planform to reduce high speed impulsive(HSI) noise from a non-lifting helicopter rotor using CFD method and optimization techniques. As for the aero-acoustic analysis, CFD technique for aerodynamic analysis and Kirchhoff's method for the acoustic analysis were used. As for the optimization method, Kriging-based genetic algorithm(GA) model as a high-fidelity optimization method was chosen. Design variables and constraints are determined for arbitrary blade planform. The result shows that the optimized blade planform with high swept-back and taper ratio can reduce HSI noise by suppressing generation of the strong shock wave on blade surface and propagation of the noise to the farfield flow region.

Aerodynamic Design of EAV Propeller using a Multi-Level Design Optimization Framework (다단 최적 설계 프레임워크를 활용한 전기추진 항공기 프로펠러 공력 최적 설계)

  • Kwon, Hyung-Il;Yi, Seul-Gi;Choi, Seongim;Kim, Keunbae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.3
    • /
    • pp.173-184
    • /
    • 2013
  • A multi-level design optimization framework for aerodynamic design of rotary wing such as propeller and helicopter rotor blades is presented in this study. Strategy of the proposed framework is to enhance aerodynamic performance by sequentially applying the planform and sectional design optimization. In the first level of a planform design, we used a genetic algorithm and blade element momentum theory (BEMT) based on two-dimensional aerodynamic database to find optimal planform variables. After an initial planform design, local flow conditions of blade sections are analyzed using high-fidelity CFD methods. During the next level, a sectional design optimization is conducted using two dimensional Navier-Stokes analysis and a gradient based optimization algorithm. When optimal airfoil shape is determined at the several spanwise locations, a planform design is performed again. Through this iterative design process, not only an optimal flow condition but also an optimal shape of an EAV propeller blade is obtained. To validate the optimized propeller-blade design, it is tested in wind-tunnel facility with different flow conditions. An efficiency, which is slightly less than the expected improvement of 7% predicted by our proposed design framework but is still satisfactory to enhance the aerodynamic performance of EAV system.

MULTI-STAGE AERODYNAMIC DESIGN OF AIRCRAFT GEOMETRIES BY KRIGING-BASED MODELS AND ADJOINT VARIABLE APPROACH (Kriging 기반 모델과 매개변수(Adjoint Variable)법을 이용한 항공기형상의 2단계 공력최적설계)

  • Yim, J.W.;Lee, B.J.;Kim, C.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.57-65
    • /
    • 2009
  • An efficient and high-fidelity design approach for wing-body shape optimization is presented. Depending on the size of design space and the number of design of variable, aerodynamic shape optimization process is carried out via different optimization strategies at each design stage. In the first stage, global optimization techniques are applied to planform design with a few geometric design variables. In the second stage, local optimization techniques are used for wing surface design with a lot of design variables to maintain a sufficient design space with a high DOF (Degree of Freedom) geometric change. For global optimization, Kriging method in conjunction with Genetic Algorithm (GA) is used. Asearching algorithm of EI (Expected Improvement) points is introduced to enhance the quality of global optimization for the wing-planform design. For local optimization, a discrete adjoint method is adopted. By the successive combination of global and local optimization techniques, drag minimization is performed for a multi-body aircraft configuration while maintaining the baseline lift and the wing weight at the same time. Through the design process, performances of the test models are remarkably improved in comparison with the single stage design approach. The performance of the proposed design framework including wing planform design variables can be efficiently evaluated by the drag decomposition method, which can examine the improvement of various drag components, such as induced drag, wave drag, viscous drag and profile drag.

  • PDF

Aerodynamic Shape Design Method for Wing Planform Using Metamodel (근사모델을 이용한 날개 평면형상 공력형상설계 방법)

  • Bae, Hyogil;Jeong, Sora
    • Journal of Aerospace System Engineering
    • /
    • v.8 no.4
    • /
    • pp.18-23
    • /
    • 2014
  • In preliminary design phase, the wing geometry of the civil aircraft was determined using the empirical equation and historical data. To make wing geometry more aerodynamically efficient, an aerodynamic shape optimization was conducted. For this purpose the parametric modeling, high fidelity CFD analysis and metamodel-based optimal design technique were adopted. The parametric modeling got the design process to achieve the improvement by generating the configuration outputs easily for the major design variables. The optimal design equations were formularized as the type of the multi-objective functions considering low/high speed and lift/drag coefficient. The optimal solution was explored with the help of the kriging metamodel and the desirability function, therefore the optimal wing planform was sought to be excellent at both low and high speed region. Additionally the optimal wing planform was validated that it was excellent not only at the specific AOA, but also all over the range of AOA.

Aerodynamic Optimization of Helicopter Blade Planform (II): Applications to Design Optimization (헬리콥터 블레이드 플랜폼 공력 최적설계(II): 최적설계 기법의 적용)

  • Kim, Chang-Joo;Park, Soo-Hyung;Shin, Ki-Cheol;Kim, Seung-Ho;Chung, Ki-Hoon;Kim, Seung-Bum
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.11
    • /
    • pp.1060-1066
    • /
    • 2010
  • This paper focuses on the application of the proposed aerodynamic optimization techniques to design the blade planform of helicopter rotors. The design problems are formulated to maximize the hover figure of merit and the equivalent lift-to-drag ratio for high forward speed by optimally distributing airfoils, twist, and chord along the blade span. The numerical characters are investigated by solving various design problems. The advantages and limitations with the present design approach and the present modeling features for performance prediction are discussed. The recommendations for the required model refinements to get more accurate optimal configurations are addressed as future research areas.

Aerodynamic Optimization of Helicopter Blade Planform (I): Design Optimization Techniques (헬리콥터 블레이드 플랜폼 공력 최적설계(I): 최적설계 기법)

  • Kim, Chang-Joo;Park, Soo-Hyung;O, Seon-Gu;Kim, Seung-Ho;Jeong, Gi-Hun;Kim, Seung-Beom
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.11
    • /
    • pp.1049-1059
    • /
    • 2010
  • This paper treats the aerodynamic optimization of the blade planform for helicopters. The blade shapes, which should be determined during the threedimensional aerodynamic configuration design step, are defined and are parameterized using the B$\acute{e}$zier curves. This research focuses on the design approaches generally adopted by industries and or research institutes using their own experiences and know-hows for the parameterization and for the definition of design constraints. The hover figure of merit and the equivalent lift-to-drag ratio for the forward flight are used to define the objective function. The resultant nonlinear programming (NLP) problem is solved using the sequential quadratic programming (SQP) method. The applications show the present method can design the important planform shapes such as the airfoil distribution, twist and chord variations in the efficient manner.

A Study on the Air to Air Missile Control Fin Optimization Using the Mathematical Modeling Based on the Fluid-Structure Interaction Simulation (수학적 모델링을 이용한 공력-구조 연계 시뮬레이션 기반 공대공 미사일 조종날개 최적화 연구)

  • Lee, Seung-Jin;Park, Jin-Yong
    • Journal of the Korea Society for Simulation
    • /
    • v.25 no.1
    • /
    • pp.1-9
    • /
    • 2016
  • This study focuses on the air to air missile control fin planform optimization for the minimizing hinge moment with the considering phenomena of fluid and structure simultaneously. The fluid-structure interaction method is applied for the fluid and structure phenomena simulation of the control fins. A transient-loosely coupled method is used for the fluid-structure interaction simulation because it is suited for using each fluid and structure dedicated simulation software. Searching global optimization point is required many re-calculation therefore in this study, a mathematical model is applied for rapidly calculation. The face centered central composite method is used for generating design points and the 2nd polynomial response surface is sued for generating mathematical model. Global optimization is performed by using the generic algorithm. An objective function is the minimizing travel distance of the center of pressure between Mach 0.7 and 2.0 condition. Finally, the objective function of optimized planform is reduced 7.5% than the baseline planform with satisfying constrained conditions.

AERODYNAMIC DESIGN OPTIMIZATION OF UAV ROTOR BLADES USING A GENETIC ALGORITHM AND ARTIFICIAL NEURAL NETWORKS (유전 알고리즘과 인공 신경망 기법을 이용한 무인항공기 로터 블레이드 공력 최적설계)

  • Lee, H.M.;Ryu, J.K.;Ahn, S.J.;Kwon, O.J.
    • Journal of computational fluids engineering
    • /
    • v.19 no.3
    • /
    • pp.29-36
    • /
    • 2014
  • In the present study, an aerodynamic design optimization of UAV rotor blades was conducted using a genetic algorithm(GA) coupled with computational fluid dynamics(CFD). To reduce computational cost in making databases, a function approximation was applied using artificial neural networks(ANN) based on a radial basis function network. Three dimensional Reynolds-Averaged Navier-Stokes(RANS) solver was used to solve the flow around UAV rotor blades. Design directions were specified to maximize thrust coefficient maintaining torque coefficient and minimize torque coefficient maintaining thrust coefficient. Design variables such as twist angle, thickness and chord length were adopted to perform a planform optimization. As a result of an optimization regarding to maximizing thrust coefficient, thrust coefficient was increased about 4.5% than base configuration. In case of an optimization minimizing torque coefficient, torque coefficient was decreased about 7.4% comparing with base configuration.

Design Optimization of QTP-UAV Prop-Rotor Blade Using ModelCenter (ModelCenter를 이용한 QTP-UAV 프롭로터 블레이드 형상 최적설계)

  • Kang, Hee Jung
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.4
    • /
    • pp.36-43
    • /
    • 2017
  • Blade design optimization of QTP-UAV prop-rotor was conducted using ModelCenter(R). Performance efficiency of the blade in hover and forward flight were adopted as the multi-objective function. Required power and pitch link force applied to constraint in each flight mode and limited lower than the value of the baseline blade. Design variables of root chord length of the blade, taper ratio, twist slope, twist angle at 0.5R of the blade, anhedral angle, parabolic coefficient of a tip shape and location of airfoil were used to generate the blade planform. CAMRAD-II, the comprehensive analysis program of rotorcraft, was used for performance analysis of prop-rotor blade in design process. Performance of the optimized blade improved 1.6% of figure of merit in hover and 13.6% of propulsive efficiency in forward flight. Pitch link force also reduced approximately 30% less than that of the baseline blade.

Wing Design Optimization of a Solar-HALE Aircraft

  • Lim, JaeHoon;Choi, Sun;Shin, SangJoon;Lee, Dong-Ho
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.3
    • /
    • pp.219-231
    • /
    • 2014
  • We develop a preliminary design optimization procedure in this paper regarding the wing planform in a solar-powered high-altitude long-endurance unmanned aerial vehicle. A high-aspect-ratio wing has been widely adopted in this type of a vehicle, due to both the high lift-to-drag ratio and lightweight design. In the preliminary design, its characteristics need to be addressed correctly, and analyzed in an appropriate manner. In this paper, we use the three-dimensional Euler equation to analyze the wing aerodynamics. We also use an advanced structural modeling approach based on a geometrically exact one-dimensional beam analysis. Regarding the structural integrity of the wing, we determine detailed configuration parameters, specifically the taper ratio and the span length. Next, we conduct a multi-objective optimization scheme based on the response surface method, using the present baseline configuration. We consider the structural integrity as one of the constraints. We reduce the wing weight by approximately 25.3 % from that in the baseline configuration, and also decrease the power required approximately 3.4 %. We confirm that the optimized wing has sufficient flutter margin and improved static longitudinal/directional stability characteristics, as compared to those of the baseline configuration.