• Title/Summary/Keyword: Planetary reactor

Search Result 5, Processing Time 0.021 seconds

Numerical Study on Flow and Heat Transfer in a CVD Reactor with Multiple Wafers

  • Jang, Yeon-Ho;Ko, Dong Kuk;Im, Ik-Tae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.4
    • /
    • pp.91-96
    • /
    • 2018
  • In this study temperature distribution and gas flow inside a planetary type reactor in which a number of satellites on a spinning susceptor were rotating were analyzed using numerical simulation. Effects of flow rates on gas flow and temperature distribution were investigated in order to obtain design parameters. The commercial computational fluid dynamics software CFD-ACE+ was used in this study. The multiple-frame-of-reference was used to solve continuity, momentum and energy conservation equations which governed the transport phenomena inside the reactor. Kinetic theory was used to describe the physical properties of gas mixture. Effects of the rotation speed of the satellites was clearly seen when the inlet flow rate was small. Thickness of the boundary layer affected by the satellites rotation became very thin as the flow rate increased. The temperature field was little affected by the incoming flow rate of precursors.

Numerical Study on Wafer Temperature Considering Gap between Wafer and Substrate in a Planetary Reactor (Planetary 형 반응기에서 웨이퍼와 기판 사이의 틈새가 웨이퍼 온도에 미치는 영향에 대한 연구)

  • Ramadan, Zaher;Jung, Jongwan;Im, Ik-Tae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.3
    • /
    • pp.1-7
    • /
    • 2017
  • Multi-wafer planetary type chemical vapor deposition reactors are widely used in thin film growth and suitable for large scale production because of the high degree of growth rate uniformity and process reproducibility. In this study, a two-dimensional model for estimating the effect of the gap between satellite and wafer on the wafer surface temperature distribution is developed and analyzed using computational fluid dynamics technique. The simulation results are compared with the results obtained from an analytical method. The simulation results show that a drop in the temperature is noticed in the center of the wafer, the temperature difference between the center and wafer edges is about $5{\sim}7^{\circ}C$ for all different ranges of the gap, and the temperature of the wafer surface decreases when the size of the gap increases. The simulation results show a good agreement with the analytical ones which is based on one-dimensional heat conduction model.

  • PDF

Analysis on the Flow and Heat Transfer in a Large Scale CVD Reactor for Si Epitaxial Growth (Si 선택적 성장을 위한 대형 CVD 반응기 내의 열 및 유동해석)

  • Jang, Yeon-Ho;Ko, Dong Guk;Im, Ik-Tae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.1
    • /
    • pp.41-46
    • /
    • 2016
  • In this study, gas flow and temperature distribution in the multi-wafer planetary CVD reactor for the Si epitaxial growth were analyzed. Although the structure of the reactor was simplified as the first step of the study, the three-dimensional analysis was performed taking all these considerations of the revolution of the susceptor and the rotation of satellites into account. From the analyses, a reasonable velocity field and temperature field were obtained. However, it was found that analyses including the upper structure of the reactor were required in order to obtain more realistic temperature results. DCS mole fraction above the satellite surface and the susceptor surface without satellite was compared in order to check the gas species mixing. We found that satellite rotation helped gases to mix in the reactor.

Impact of boundary layer simulation on predicting radioactive pollutant dispersion: A case study for HANARO research reactor using the WRF-MMIF-CALPUFF modeling system

  • Lim, Kyo-Sun Sunny;Lim, Jong-Myung;Lee, Jiwoo;Shin, Hyeyum Hailey
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.244-252
    • /
    • 2021
  • Wind plays an important role in cases of unexpected radioactive pollutant dispersion, deciding distribution and concentration of the leaked substance. The accurate prediction of wind has been challenging in numerical weather prediction models, especially near the surface because of the complex interaction between turbulent flow and topographic effect. In this study, we investigated the characteristics of atmospheric dispersion of radioactive material (i.e. 137Cs) according to the simulated boundary layer around the HANARO research nuclear reactor in Korea using the Weather Research and Forecasting (WRF)-Mesoscale Model Interface (MMIF)-California Puff (CALPUFF) model system. We examined the impacts of orographic drag on wind field, stability calculation methods, and planetary boundary layer parameterizations on the dispersion of radioactive material under a radioactive leaking scenario. We found that inclusion of the orographic drag effect in the WRF model improved the wind prediction most significantly over the complex terrain area, leading the model system to estimate the radioactive concentration near the reactor more conservatively. We also emphasized the importance of the stability calculation method and employing the skillful boundary layer parameterization to ensure more accurate low atmospheric conditions, in order to simulate more feasible spatial distribution of the radioactive dispersion in leaking scenarios.

Study on the Coupled Effects of Process Parameters on Silicon Growth Using Chemical Vapor Deposition

  • Ramadan, Zaher;Ko, Dong Kuk;Im, Ik-Tae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.3
    • /
    • pp.115-121
    • /
    • 2019
  • Response surface methodology (RSM) is used to investigate the complex coupling effects of different operating parameters on silicon growth rate in planetary CVD reactor. Based on the computational fluid dynamics (CFD) model, an accurate RSM model is obtained to predict the growth rate with different parameters, including temperature, pressure, rotation speed of the wafer, and the mole fraction of dichlorosilane (DCS). Analysis of variance is used to estimate the contributions of process parameters and their interactions. Among the four operating parameters that have been studied, the influences of susceptor temperature and the operating pressure were the most significant factors that affect silicon growth rate, followed by the mole fraction of DCS. The influence of wafer rotation is the least. The validation tests show that the results of silicon deposition rate obtained from the regression model are in good agreement with those from CFD model and the maximum deviations is 2.15%.