• 제목/요약/키워드: Planetary Gear Train

검색결과 54건 처리시간 0.023초

라비니오 유성기어의 신뢰성 및 수명에 관한 연구 (A Study on the Reliability and Life of the Ravigneaux Planetry Gear Train)

  • Kim, T.H.;Kim, H.S.;Yang, S.M.
    • 한국정밀공학회지
    • /
    • 제13권10호
    • /
    • pp.36-45
    • /
    • 1996
  • The precise estimation of the reliability and life of the Ravigneaux planetary gear train used in an automatic transmission is necessary in order to enable accurate material and geometric properties to reliability distrobution and the number of load cycles at failure. These are critical for the proba- bilistic design of complex planetary gear system as Ravigneaux type particularly during various gear ratios. The Ravigneaux planetary gear train has five gears, such as a forward and a reverse sun gear, a short and a long pinion, and an annulus gear. In this paper, the Ravigneaux gear system is analyzed to figure out the reliablity distribution. i.e. the probability of survival in the system without its overhaul. First, the reliablity method based on the Weibull distribution is used in conjuction with the Palmgren's model to predict both the individual reliabilities of its components and the nimber of load cycles when the system failed. Then using the presented method, the life of the Ravigneaux gear system can be determined. Alwo the different design parameters such as tooth face width, material property, and Weibull exponent are applied and reached to optimal ones. Thus, the precise evaluation of the reliability and life of the Ravigneaux planetary gear train used in an automatic transmission can be effectively carried out.

  • PDF

1단 유성기어의 전달오차 특성에 대한 실험적 연구 - 토크 및 속도 변화의 영향 (Experimental Study on Transmission Errors of a Single-Stage Planetary Gear Train: Influence of Torque and Speed Variations)

  • 송진섭;이근호;박영준;남용윤
    • 한국생산제조학회지
    • /
    • 제24권3호
    • /
    • pp.320-326
    • /
    • 2015
  • Despite the wide industrial applications of planetary gear trains, the relationship between the design parameters (tooth profile, carrier mass, etc.) and performance (strength, vibration, noise, etc.) remains poorly understood. A significant amount of research has focused on transmission errors, which are measurable performance indicators directly related to the design parameters. Herein, an experimental test rig for a single-stage planetary gear set built using digital angular encoders and gap sensors is described. To study the static and dynamic characteristics of this planetary gear train, the transmission errors and sun gear orbit are analyzed from the data measured under various levels of torque and speed. The transmission errors of the gear train decrease 40% when the speed increases from 30 to 600 rpm with an output torque of 39.2 Nm, and increase 22% when the output torque increases from 19.6 to 39.2 Nm with an input speed of 30 rpm.

콘크리트 믹서 트럭용 믹서 감속기의 차동 유성 기어 트레인에 대한 위험속도 해석 (The Critical Speed Analysis of the Differential Planetary Gear Train of a Concrete Mixer Truck Mixer Reducer)

  • 배명호;배태열;김당주
    • 드라이브 ㆍ 컨트롤
    • /
    • 제14권1호
    • /
    • pp.1-7
    • /
    • 2017
  • The power train of a concrete truck mixer reducer includes differential planetary gears to get a large reduction ratio for operating the mixer drum in a compact structure. These differential planetary gears are a very important part of the mixer reducer where strength problems are the main concern. Gear bending stress, gear compressive stress and scoring failure are the main concerns. Many failures in differential planetary gears are due to the insufficient gear strength and resonance problems caused by major excitation forces such as gear mating failure in the transmission. In the present study, where the excitation frequencies are the gear tooth passing frequencies of the mating gears, a Campbell diagram is used to calculate differential planetary gear critical speeds. Mode shapes and natural frequencies of the differential planetary gears are calculated by CATIA V5. These are used to predict gear resonance failures by comparing the working speed range with the critical speeds due to the gear transmission errors of the differential planetary gears.

경량전철용 차동기어장치의 구성 및 간섭에 관한 연구 (The Study on Configurations and Interferences of differential gear unit for Light Rail Transit)

  • 김연수;박성혁;이우동;정종덕;한석윤
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 1999년도 추계학술대회 논문집
    • /
    • pp.99-106
    • /
    • 1999
  • Because many light rail transit systems are mainly operated in the downtown areas of a large cities and the congestion areas, there are many steep gradients and sharp radius sections in that lines. As that reasons above, light rail vehicles are equipped with differential gear units between traction motors and final reduction gear units. In this paper, the configurations and the interferences of 2K-H I type Planetary gear train, which is applicable for light rail vehicles and based on various differential gear units, are studied. The ranges of addendum modification coefficients which would not lead to interferences is analyzed, and optimal addendum modification coefficients among these ranges are presented, which generate the maximum efficiency of planetary gear drives and differential gear unit as pressure angles, speed ratios,

  • PDF

동력 분배형 유성기어열의 구조 특성 분석 (Analysis of Structural Characteristics of Power-Split Type Planetary Gear Train)

  • 이기훈;이근호;배인호;이정상;정태형
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 춘계학술대회 논문집
    • /
    • pp.311-314
    • /
    • 2008
  • The volume and size of the wind turbine gearbox has been increased with increasing transmitted power. The optimal sizing of gearbox is important due to limited space on the nacelle. The power-split type planetary gear train has been regarded as a better solution than conventional type from the point of view of the volume and weight. The purpose of this paper is to optimize the volume and weight of the gearbox by the analysis of structural characteristics and evaluation of strength of the power-split type planetary gear train.

  • PDF

소음/진동을 고려한 발전설비용 감속기 개발 (Development of Reducer for Generating Facility of Electric Power for Low Noise/vibration)

  • 이형우;박철우
    • 한국정밀공학회지
    • /
    • 제25권11호
    • /
    • pp.73-82
    • /
    • 2008
  • A dynamic model of reducer for generating facility of electric pourer having bevel gear pair and planetary gear train is developed by lumped method. The model accounts for the shaft and bearing flexibilities, gyroscopic effects and the force couplings among the transverse and torsion motions due to gearing. Vibration/noise analysis as well as strength of bevel gear pair and planetary gear train are considered. Exciting forces of high reducer for generating facility of electric power areconsidered as the mass unbalance of the rotors, misalignment and a function of gear transmission error. A Campbell diagram, in which the excitation sources caused by the mass unbalance of the rotors, misalignment and the transmitted errors of the gearing are considered, shows that, at the operating speed, there are not critical speed.

지게차용 기계유압식 무단변속기의 기어류에 대한 강도해석 (The Strength Analysis of Gears on Hydro-Mechanical Continuously Variable Transmission for Forklift)

  • 배명호;배태열;최성광
    • 드라이브 ㆍ 컨트롤
    • /
    • 제13권4호
    • /
    • pp.45-51
    • /
    • 2016
  • The power train of a hydro-mechanical, continuously variable transmission for forklifts makes use of hydro-static units, hydraulic multi-wet disc brakes & clutches, and complex helical & planetary gears. The complex helical & planetary gears are very important parts of the transmission because of a strength problem. In the present study, we calculated the specifications of the complex helical & planetary gear train, and analyzed the gear bending and compressive stresses of the gears. It is necessary to analyze the gear bending and compressive stresses thoroughly for optimal design of the complex helical & planetary gears with respect to cost and reliability. In this paper, we analyze the actual gear bending and compressive stresses of complex helical & planetary gears using the Lewes & Hertz equation, and we also verify the calculated specifications of the complex helical & planetary gears by evaluating the results of the data of allowable bending and compressive stress using the Stress vrs Number of Cycles curves of gears.

기계유압식 무단변속기용 기어트레인에 대한 위험속도 해석 (The Critical Speed Analysis of Gear Train for Hydro-Mechanical Continuously Variable Transmission)

  • 배명호;배태열;최성광
    • 드라이브 ㆍ 컨트롤
    • /
    • 제14권4호
    • /
    • pp.71-78
    • /
    • 2017
  • The power train of hydro-mechanical continuously variable transmission (HMCVT) for 8-ton class forklift includes hydro-static units, hydraulic multi-wet disc brake & clutches and complex helical & planetary gears. The helical & planetary gears are key components of HMCVT's power train wherein strength problems are the main concerns including gear bending stress, gear compressive stress, and scoring failure. Many failures in power train gears of HMCVT are due to the insufficient gear strength and resonance problems caused by major excitation forces, such as gear transmission error of mating gear fair in the transmission. In this study, wherein excitation frequencies are the gear tooth passing frequencies of the mating gears, a Campbell diagram is used to calculate the power train gears' critical speeds. Mode shapes and natural frequencies of the power train gears are calculated by CATIA V5. These are used to predict resonance failures by comparing the actual working speed range with the critical speeds due to the gear transmission errors of HMCVT's power train gears.

21톤급 휠 굴착기용 트랜스미션의 기어 트레인에 대한 강도 해석 (Strength Analysis of Complex Gear Train for Transmission of 21-Ton Grade Wheel Excavator)

  • 이준희;배명호;조연상
    • Tribology and Lubricants
    • /
    • 제38권5호
    • /
    • pp.179-184
    • /
    • 2022
  • The power train of transmission for 21-ton grade wheel excavator makes use of a complex gear train composed of a planetary and helical gear system to drive the wheel excavator by transmitting power to the axle. The complex gear train with a shift mode is an important part of the transmission because of strength problems in an extreme environment. To calculate the specifications of the complex gear train and analyze the gear bending and compressive stresses of the complex gear train, this study analyzes gear bending and compressive stresses accurately for the optimal design of the complex gear train with respect to cost and reliability. In this article, the gear bending and compressive stresses of the complex gear train are calculated using the Lewes and Hertz equation. Evaluating the results with the data of the allowable bending and compressive stress from the stress and number of cycles curves of the gears verified the calculated specifications of the complex gear train. A computer structure analysis is performed with the 3D model of the planetary and helical gears to analyze the structure strength of the complex gear train. The results demonstrate that the durability and strength of the complex gear train are safe, because the safety factors of the bending and compressive stresses are more than 1.0.