• Title/Summary/Keyword: Plane-deformation

Search Result 802, Processing Time 0.032 seconds

The Effect of Multi-Coal Combustion on the Generation of Slagging in a Bituminous Coal-fired Power Plant Boiler (연탄 화력발전소 보일러에서 다탄종 연소가 슬래깅 발생에 미치는 영향)

  • Park, Jihoon;Yoo, Hoseon
    • Plant Journal
    • /
    • v.18 no.1
    • /
    • pp.55-61
    • /
    • 2022
  • In this study, I analyzed the effect of slagging caused by blending bituminous coal and subbituminous coal while maintaining the generator output, combustion conditions, and ventilation conditions for 870MW thermal power plant designed with bituminous coal. Accordingly I proposed an acceptable method of blending coal method. the blending ratio of sub-bituminous coal was adjusted to 10%, 20%, 40%, 60%, 80%, etc. to confirm ultimate analysis, proximate analysis, ash fusion temperature change, slagging indices, etc. Proper blending coal conditions are blending with sub-bituminous coal at 40% or less, ratio of base component to acid component(B/A) is 0.4 or less or 1 or more, total alkali(TA) is 3.5 or less, fusion slagging index(Rfs) is 1,345℃ or more, and ash content is 13% or less in ultimate analysis, the ash content in proximate analysis is 15% or less, and the initial deformation temperature(IDT) should be at least 1,200℃ or more

  • PDF

Characteristics of Run-up Height over Sandy Beach with Submerged Breakwaters : PART I - Effect of Plane Arrangement of Submerged Breakwaters (잠제 설치 연안의 처오름 높이 특성 : PART I - 잠제의 평면배치에 의한 영향)

  • Hur, Dong-Soo;Lee, Woo-Dong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3B
    • /
    • pp.345-354
    • /
    • 2008
  • In this present study, we made a first attempt to investigate physical transformations of incident waves in surf and swash zone and hydrodynamic phenomena of detached and submerged breakwaters. For an accurate simulation of the complicated wave deformation, Three-Dimensional numerical model with Large Eddy Simulation has been developed recently and expanded properly for the current applications, which is able to simulate an accurate and direct WAve Structure Sandy seabed interaction (hereafter, LES-WASS-3D). LES-WASS-3D has been validated through the comparison with experimental results for limited cases, and has been used for the simulation of wave run-up on sandy beach, mean fluid flows over and around submerged structures and swash zone (alongshore/rip current), and spatial distribution of wave height in wide fluid regions. In addition, a strategy of efficient deployment ($Y/L_i=1.50{\sim}1.75$, $W/L_r=0.50$) of the submerged breakwaters has been discussed.

Performance control analysis of concrete-filled steel tube sepa-rated spherical joint wind power tower

  • Yang Wen;Guangmao Xu;Xiazhi Wu;Zhaojian Li
    • Structural Engineering and Mechanics
    • /
    • v.87 no.2
    • /
    • pp.137-149
    • /
    • 2023
  • In this study, to explore the working performance of the CFST split spherical node wind power tower, two groups of CFST split spherical joint plane towers with different web wall thicknesses and a set of space systems were analyzed. The tower was subjected to a low-cycle repeated load test, and the hysteresis and skeleton curves were analyzed. ABAQUS finite element simulation was used for verification and comparison, and on this basis parameter expansion analysis was carried out. The results show that the failure mode of the wind power tower was divided into weld tear damage between belly bar, high strength bolt thread damage and belly rod flexion damage. In addition, increasing the wall thickness of the web member could render the hysteresis curve fuller. Finally, the bearing capacity of the separated spherical node wind power tower was high, but its plastic deformation ability was poor. The ultimate bearing capacity and ductility coefficient of the simulated specimens are positively correlated with web diameter ratio and web column stiffness ratio. When the diameter ratio of the web member was greater than 0.13, or the stiffness ratio γ of the web member to the column was greater than 0.022, the increase of the ultimate bearing capacity and ductility coefficient decreased significantly. In order to maximize the overall mechanical performance of the tower and improve its economy, it was suggested that the diameter ratio of the ventral rod be 0.11-0.13, while the stiffness ratio γ should be 0.02-0.022.

Flexural performance of prestressed UHPC beams with different prestressing degrees and levels

  • Zongcai Deng;Qian Li;Rabin Tuladhar;Feng Shi
    • Computers and Concrete
    • /
    • v.34 no.4
    • /
    • pp.379-391
    • /
    • 2024
  • The ultra-high performance concrete (UHPC) mixed with hybrid fibers has excellent mechanical properties and durability, and the hybrid fibers have a certain impact on the bearing capacity, deformation capacity, and crack propagation of beams. Many scholars have conducted a series of studies on the bending performance of prestressed UHPC beams, but there are few studies on prestressed UHPC beams mixed with hybrid fibers. In this study, five bonded post-tensioned partially prestressed UHPC beams mixed with steel fibers and macro-polyolefin fibers were poured and subjected to four-points symmetric loading bending tests. The effects of different prestressing degrees and prestressing levels on the load-deflection curves, crack propagation, failure modes and ultimate bearing capacity of beams were discussed. The results showed that flexural failure occurred in the prestressed UHPC beams with hybrid fibers, and the integrity of specimens was good. When the prestressing degree was the same, the higher the prestressing level, the better the crack resistance capacity of UHPC beams; When the prestressing level was 90%, increasing the prestressing degree was beneficial to improve the crack resistance and ultimate bearing capacity of UHPC beams. When the prestressing degree increased from 0.41 to 0.59, the cracking load and ultimate load increased by 66.0% and 41.4%, respectively, but the ductility decreased by 61.2%. Based on the plane section assumption and considering the bridging effect of short fibers, the cracking moment and ultimate bearing moment were calculated, with good agreement between the test and calculated values.

Analysis of Tidal Deflection and Ice Properties of Ross Ice Shelf, Antarctica, by using DDInSAR Imagery (DDInSAR 영상을 이용한 남극 로스 빙붕의 조위변형과 물성 분석)

  • Han, Soojeong;Han, Hyangsun;Lee, Hoonyol
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_1
    • /
    • pp.933-944
    • /
    • 2019
  • This study analyzes the tide deformation of land boundary regions on the east (Region A) and west (Region B) sides of the Ross Ice Shelf in Antarctica using Double-Differential Interferometric Synthetic Aperture Radar (DDInSAR). A total of seven Sentinel-1A SAR images acquired in 2015-2016 were used to estimate the accuracy of tide prediction model and Young's modulus of ice shelf. First, we compared the Ross Sea Height-based Tidal Inverse (Ross_Inv) model, which is a representative tide prediction model for the Antarctic Ross Sea, with the tide deformation of the ice shelf extracted from the DDInSAR image. The accuracy was analyzed as 3.86 cm in the east region of Ross Ice Shelf and it was confirmed that the inverse barometric pressure effect must be corrected in the tide model. However, in the east, it is confirmed that the tide model may be inaccurate because a large error occurs even after correction of the atmospheric effect. In addition, the Young's modulus of the ice was calculated on the basis of the one-dimensional elastic beam model showing the correlation between the width of the hinge zone where the tide strain occurs and the ice thickness. For this purpose, the grounding line is defined as the line where the displacement caused by the tide appears in the DDInSAR image, and the hinge line is defined as the line to have the local maximum/minimum deformation, and the hinge zone as the area between the two lines. According to the one-dimensional elastic beam model assuming a semi-infinite plane, the width of the hinge region is directly proportional to the 0.75 power of the ice thickness. The width of the hinge zone was measured in the area where the ground line and the hinge line were close to the straight line shown in DDInSAR. The linear regression analysis with the 0.75 power of BEDMAP2 ice thickness estimated the Young's modulus of 1.77±0.73 GPa in the east and west of the Ross Ice Shelf. In this way, more accurate Young's modulus can be estimated by accumulating Sentinel-1 images in the future.

Deformation Characteristics of Zircaloy-4 Fuel Cladding due to Oxidation in Environment of High Temperature and Steam (고온, 수증기 속에서 산화된 질칼로이-4 핵연료 피복관의 변형 특성에 관한 연구)

  • Jung, Sung-Hoon;Suh, Kyung-Soo;Kim, In-Sup
    • Nuclear Engineering and Technology
    • /
    • v.18 no.3
    • /
    • pp.218-227
    • /
    • 1986
  • Studies were conducted to determine the extent of oxidation and same of the mechanical property changes of Zircaloy-4 fuel cladding after it was exposed to hot steam environment. The purpose of these tests was to provide some informations on the embrittlement behavior of CANDU type fuel cladding, which could be experienced under the loss-of-coolant accident conditions. The Zircaloy fuel cladding tubes were exposed in a steam environment at the temperature of 90$0^{\circ}C$, 1,00$0^{\circ}C$. The growth of the ZrO$_2$ layer combined with an oxygen rich $\alpha$-phase layer into the Zircaloy tube material was found as a function of time t and temperature of steam exposure, E=1.1√Dt+0.002 where D is a temperature dependent diffusion coefficient. The tensile strength of the specimens exposed for a short period increased but decreased continuously with further exposure. The circumferential elongation was drastically changed with the exposure time while the hoop strength did't decrease greatly. The X-ray measurement of preferred orientation of the Zircaloy tube material indicated that grains in the as received tube were oriented such that the poles of the basal (0001) planes were predominantly radial, while the poles of the basal plane in the tube materials heattreated at 1,00$0^{\circ}C$ were oriented tangentially. It appears that this reoriented texture may contribute to lessening the decrease of the hoop strength of the heat treated Zircaloy tube material.

  • PDF

Corrosion Fatigue Cracking Propagation Characteristics and its Protection for the AL-Alloys of Shipbuilding (선박용 알루미늄 합금재의 부식피로균열 진전특성과 그 억제에 관한 연구)

  • Lim, Uh-Joh;Kim, Soo-Byung;Lee, Jin-Yel
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.25 no.2
    • /
    • pp.87-104
    • /
    • 1989
  • Recently, with the tendency of more lightening, high-strength and high-speed in the marine industries such as marine structures, ships and chemical plants, the use of the aluminium Alloy is rapidly enlarge and there occurs much interest in the study of corrosion fatigue crack characteristics. In this paper, the initiation of surface crack and the propagation characteristics on the base metal and weld zone of 5086-H116 Aluminium Alloy Plate which is one of the Al-Mg serious alloy(A5000serious) used most when building the special vessels, were investigated by the plane bending corrosion fatigue under the environments of marine, air and applying cathodic protection. The effects of various specific resistances on the initiation, propagation behavior of corrosion fatigue crack and corrosion fatigue life in the base metal and heat affected zone were examined and its corrosion sensitivity was quantitatively obtained. The effects of corrosion on the crack depth in relation to the uniform surface crack length were also investigated. Also, the structural, mechanical and electro-chemical characteristics of the metal at the weld zone were inspected to verify the reasons of crack propagation behavior in the corrosion fatigue fracture. In addition, the effect of cathodic protection in the fracture surface of weld zone was examined fractographically by Scanning Electron Microscope(S.E.M.). The main results obtained are as follows; (1) The initial corrosion fatigue crack sensitibity under specific resistance of 25Ω.cm% show 2.22 in the base metal and 19.6 in the HEZ, and the sensitivity decreases as specific resistance increases (2) By removing reinforcement of weldment, the initiation and propagation of corrosion crack in the HAZ are delayed, and corrosion fatigue life increases. (3) As specific resistance decreases, the sensitivity difference of corrosion fatigue life in the base metal and HAZ is more susceptible than that of intial corrosion fatigue crack. (4) Experimental constant, m(Paris' rule) in the marine environment is in the range of about 3.69 to 4.26, and as specific resistance increases, thje magnitude of experimental constant, also increases and the effect by corrosion decreases. (5) Comparing surface crack length with crack depth, the crack depth toward the thickness of specimen in air is more deeply propagated than that in corrosion environment. (6) The propagation particulars of corrosion fatigue crack for HAZ under initial stress intensity factor range of $\Delta$k sub(li) =27.2kgf.mm super(-3/2) and stress ratio of R=0 shows the retardative phenomenon of crack propagation by the plastic deformation at crack tip. (7) Number of stress cycles to corrosion fatigue crack initiation of the base metal and the welding heat affected zone are delayed by the cathodic protection under the natural sea water. The cathodic protection effect for corrosion fatigue crack initiation is eminent when the protection potential is -1100 mV(SCE). (8) When the protection potential E=-1100 mV(SCE), the corrosion fatigue crack propagation of welding heat affected zone is more rapid than that of the case without protection, because of the microfissure caused by welding heat cycle.

  • PDF

Finite Element Vibration Analysis of Laminated Composite Folded Structures With a Channel Section using a High-order Shear deformation Plate Theory (고차전단변형 판이론을 이용한 채널단면을 갖는 복합적층 절판 구조물의 유한요소 진동 해석)

  • 유용민;장석윤;이상열
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.1
    • /
    • pp.21-30
    • /
    • 2004
  • This study deals with free vibrations of laminated composite structures with a channel section using finite element method. In this paper, the mixed finite element method using Lagrangian and Hermite interpolation functions is adopted and a high-order plate theory is used to analyze laminated composite non-prismatic folded plates with a channel section more accurately for free vibration. The theory accounts for parabolic distribution of the transverse shear stress and requires no shear correction factors supposed in the first-order plate theory. An 32×32 matrix is assembled to transform the system element matrices from the local to global coordinates using a coordinate transformation matrix, in which an eighth drilling degree of freedom (DOF) per node is appended to the existing 7-DOF system. The results in this study are compared with those of available literatures for the conventional and first-order plate theory. Sample studies are carried out for various layup configurations and length-thickness ratio, and geometric shapes of plates. The significance of the high-order plate theory in analyzing complex composite structures with a channel section is enunciated in this paper.

Earth Pressure Analysis of Tunnel Ceiling according to Tunnel Plastic Zone (터널 소성영역에 따른 터널 천단토압 해석)

  • Park, Shin-Young;Han, Heui-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.753-764
    • /
    • 2020
  • In this study, the plastic zone and internal earth pressure of the tunnel were calculated using the following three methods: metal plasticity to analyze the deformation of metal during plastic processing, Terzaghi's earth pressure theory from the geotechnical perspective and modified Terzaghi's earth pressure theory, and slip line theory using Mohr-Coulomb yield conditions. All three methods are two-dimensional mathematical analysis models for analyzing the plane strain conditions of isotropic materials. Using the theory of metallurgical plastics, the plastic zone and the internal earth pressure of the ground were obtained by assuming that the internal pressure acts on the tunnel, so different results were derived that did not match the actual tunnel site, where only gravity was applied. An analysis of the plasticity zone and earth pressure via the slip-line method showed that a failure line is formed in a log-spiral, which was found to be similar to the real failure line by comparing the results of previous studies. The earth pressure was calculated using a theoretical method. Terzaghi's earth pressure was calculated to be larger than the earth pressure considering the dilatancy effect.

Quantitative Analysis on the Structure of Hambaek Syncline (정량적(定量的) 해석(解析)에 의(依)한 함백향사(咸白向斜) 구조(構造) 연구(硏究))

  • Park, Rin Sik;Min, Kyung Duck
    • Economic and Environmental Geology
    • /
    • v.13 no.3
    • /
    • pp.141-158
    • /
    • 1980
  • A geologic structure could be formed through various processes, because there are a number of factors which control the deformation of the Earth's crust. In geology, we could call it geological epistemology to describe exactly a geologic structure, and call it geological logics to infer logically the deforming process through which the geologic structure had been formed. Degree of legitimacy of geological logics depends upon the degree of exactness of geological epistemology. This study described quantitatively 3-dimensional Hambaek Syncline through computer analysis, and examined qualitatively into its deforming mechanism based on the results of 3-dimensional analysis of the structure. Input data for the computer analysis are dips and dip directions of bedding planes of the structure. The Hambaek Syncline disclose a minor fold group of NE-SW or NNE-SSW trend and a large scale fold of E-W trend. The conclusions of this study are as follows: (1) The fold of E-W trend is primary fold $(F_1)$ and the minor fold group of NE-SW or NNE-SSW trend secondary fold $(F_2)$. (2) Hambaek Syncline is cylindrical type fold. (3) Apparent axial trace of Hambaek syncline does not coincide with true axial trace. The apparent axial trace is $N70^{\circ}-80^{\circ}W$ in Gohan and Sabuk area, and changes to $N70^{\circ}-80^{\circ}E$ in the westward of the area, while the true axial trace is $N40^{\circ}-70^{\circ}W$ in the former, and $N60^{\circ}-80^{\circ}E$ in the latter area. (4) Westward dipping of axial plane of the minor fold group of NE-SW or NNE-SSW trend can be attributed to simple shear movements along overthrusts. (5) Angle between axial trace and the directional trace of the maximum principal compressive stress $({\sigma}_1)$ may not be perpendicular each other. The angle between them is governed by the following factors; 1) the plunge of fold axis 2) the dip of axial surface 3) cylindrisity (6) The mean axial trace of Hambaek Syncline $(F_1)$ is $N45.6^{\circ}W$, and the directional trace of ${\sigma}_1$ is $N52.4^{\circ}E$ (7) The mean axial trace of the minor fold group of NE-SW or NNE-SSW trend $(F_2)$ is $N21^{\circ}E$, and the directional trace of ${\sigma}_1$ is $N22^{\circ}W$.

  • PDF