• Title/Summary/Keyword: Plane-Stress Fracture Toughness

Search Result 39, Processing Time 0.022 seconds

Effects of Constrained Groove Pressing (CGP) on the plane stress fracture toughness of pure copper

  • Mohammadi, Bijan;Tavoli, Marzieh;Djavanroodi, Faramarz
    • Structural Engineering and Mechanics
    • /
    • v.52 no.5
    • /
    • pp.957-969
    • /
    • 2014
  • Among severe plastic deformation methods, groove pressing is one of the prominent techniques for producing ultra-fine grained sheet materials. This process consists of imposing repetitive severe plastic deformation on the plate or sheet metals through alternate pressing. In the current study, a 2 mm pure Cu sheet has been subjected to repetitive shear deformation up to two passes. Hardness and tensile yield and ultimate stress were obtained after groove pressing. Fracture toughness tests have been performed and compared for three conditions of sheet material namely as received (initial annealed state), after one and two passes of groove pressing. Results of experiments indicate that a decrease in the values of fracture toughness attains as the number of constrained groove pressing (CGP) passes increase.

Investigation on Effects of Residual Stresses and Charpy V-Notch Impact Energy on Brittle Fractures of the Butt Weld between Close Check Valve and Piping, and of the Valve Body in Nuclear Power Plants (원전 역지 밸브/배관 맞대기 용접부와 밸브 몸체의 취성 파괴에 미치는 잔류응력 및 Charpy V-노치 충격에너지의 영향 고찰)

  • Kim, Jong-Sung;Kim, Hyun-Su
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.11 no.1
    • /
    • pp.69-73
    • /
    • 2015
  • The study investigated effects of residual stresses and Charpy impact energy on brittle fractures of the butt weld between the valve and the piping, and of the valve body in nuclear power plants via a linear elastic fracture mechanics approach in the ASME B&PV Code, Sec.XI and finite element analysis. Weld residual stress in a butt weld between close check valve and piping, and residual stress in the valve due to casting process were assumed to be proportional to yield strength of base metal. Operating stresses in the butt weld and the valve body were calculated using approximate engineering formulae and finite element analysis, respectively. Applied stress intensity factors were calculated by assuming postulated cracks with specific sizes and then by substituting the residual stresses and the operating stresses into engineering formulae presented in the ASME B&PV Code, Sec.III. Plane strain fracture toughness was derived by using a correlation between Charpy V-notch impact energy and fracture toughness. Structural integrity of the weld and the body against brittle fracture was assessed by using the applied stress intensity factors, plane strain fracture toughness and the linear elastic fracture mechanics approach. As a result, it was identified that the structural integrity was maintained with decreasing the residual stress levels and increasing the Charpy V-notch impact energy.

A Study of Crack Growth Behavior of Al2024 (Al2024의 균열성장거동에 관한 연구)

  • Lee, Won-Seok;Lee, Hyun-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.10
    • /
    • pp.49-55
    • /
    • 2000
  • This study describes the fatigue characteristics for Al2024 alloy, which is aircraft structure material. For this work, the plane-strain fracture toughness test, the plane-stress fracture toughness test and the crack growth rates test were conducted under the standard testing method. Test equipment is a computer-controlled closed-loop fatigue testing machine. The data of each test result is very important to aircraft structure reliability estimation, life prediction, design analysis, endurance analysis and damage tolerance analysis. In addition, the fatigue crack growth threshold($\DeltaKth$) value decreased as the stress ratio increased. Also, $\DeltaKth$ decreased as the thickness increased in LT, TL directions.

  • PDF

Comparison with R Curve Behavior fer the K and J Parameter of structural Steel Hot-Rolled Thin Plates (일반구조용강 열간압연 박판의 K와 J 파라미터에 대한 R곡선 거동의 비교)

  • 이계승;이억섭
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.812-815
    • /
    • 2002
  • The shape of K-R curve for an ideally brittle material is flat because the surface energy is an unvaried material property. However, the K-R curve can take on a variety of shapes when nonlinear material behavior accompanies fracture. By the way, a general metallic material is nonlinear, structural steel is such. Therefore, the J-R curve form J-integral value instead of K parameters can be used to evaluate elastic-plastic materials with flaws in terms of ductile fracture that can be significant to design. In this paper, R-curve behaviors form K and J parameter is considered for the precise assessment of fracture analysis, in case of JS-SS400 steels.

  • PDF

Characterization of Microstructures and Fracture Toughness of SR Specimen in Granitic Rocks (화강암에서 SR 시편의 파괴인성과 미세구조적인 특징)

  • Lee, Sang-Eun
    • Tunnel and Underground Space
    • /
    • v.20 no.3
    • /
    • pp.217-224
    • /
    • 2010
  • Three relatively homogeneous granitic rocks were studied to investigate the relationship between their microstructural properties and fracture toughness. Fracture toughness and ultrasonic velocity were varied with the orientation of mineral's long axis and microcrack, obtained from optical microscope. The lowest fracture toughness values are obtained, when the fracture propagates parallel to weakness planes which have the orientation of mineral's long axis and microcrack, in other words, when weakness planes develop perpendicular to the direction of tensile stress agrees with that of rift plane. The fracture toughness values, measured with the short rod method, varied from 1.63 to 2.62 MPa $m^{0.5}$, and their values are related with the average grain size and average microcrack length.

Evaluation of Fracture Toughness by J-A$_2$ Method Considering Size Effect (시편크기의 영향을 고려한 J-A$_2$ 방법에 의한 파괴인성 평가)

  • 이정윤;김영종;김용환;김재훈
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.1
    • /
    • pp.153-163
    • /
    • 2000
  • The size effect on fracture toughness was investigated by introducing $J-A_2$ theory. For this application,small size specimens were chosen to establish $J-A_2$ assessment curve with FEM analysis. Two-dimensional FEM analysis was conducted with plane strain model using ABAQUS by domain integral method to calculate both crack tip stress and fracture toughness which were used to establish $J-A_2$ curve. The assessment curve predicted the fracture toughness of large specimens very well when compared to the test values. The results showed good prediction for deep crack specimen, though there were acceptable deviations in shallow cracked specimens, presumably caused by constraint effect. When the curve applied to reactor vessel in order to predict end of life fracture toughness with assumption of on-power pressure test condition, it provided the reasonable pressure compared to the existing design value. Better predictions would be possible if more test data were available.

  • PDF

New Fracture Toughness Test Method of Zircaloy-4 Nuclear Fuel Cladding (Zircaloy-4 핵연료 피복관의 신파괴인성 시험법)

  • Oh, Dong-Joon;Ahn, Sang-Bok;Hong, Kwon-Pyo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.5
    • /
    • pp.823-832
    • /
    • 2003
  • To define the causes of cladding degradation which can take place during the operation of nuclear power plants, it is required to develop the new fracture toughness test of spent fuel cladding. The fracture toughness of Zircaloy-4 cladding was estimated using the recently developed KAERI embedded Charpy (KEC) specimen. Axially notched KEC specimens cut directly from unirradiated fuel claddings, were tested in a way similar to the standard toughness test method of a Single Edge Bending (SEB) specimen. The results of KEC fracture toughness test at room temperatures were discussed and compared with those of the previous other studies. In conclusions, even though the KEC fracture toughness test of nuclear fuel claddings was easier and more reliable than those developed earlier, the results from the cladding fracture tests were not the material characteristics but the specific fracture parameters which were deeply related to the specification of claddings. In addition, the phenomenon of a thickness yielding was not observed from the fracture surface. It was closely related to the fact that the plane strain condition of the KEC specimen was changed to the plane stress condition during crack advancing. It was also supported by the fractographic evidence that the formation of ductile dimples at the crack initiation became the similar appearance such as a quasi-cleavage after the sufficient crack advancing.

Specimen Thickness and Crack Depth Effects on J Testing and Crack Tip Constraint for Non-standard Specimen (시편두께 및 균열깊이 영향을 고려한 비표준시편의 J 시험법 및 구속효과의 정량화)

  • Kim, Jin-Su;Cho, Soo-Man;Kim, Yun-Jae;Kim, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.9
    • /
    • pp.1531-1538
    • /
    • 2003
  • This paper compiles solutions of plastic $\eta$ factors and crack tip stress triaxialites for standard and nonstandard fracture toughness testing specimens, via detailed three-dimensional (3-D) finite element (FE) analyses. Fracture toughness testing specimens include a middle cracked tension (M(T)) specimen, SE(B), single-edge cracked bar in tension (SE(T)) and C(T) specimen. The ligament-to-thickness ratio of the specimen is systematically varied. It is found that the use of the CMOD overall provides more robust experimental J estimation than that of the LLD, for all cases considered in the present work. Moreover, the J estimation based on the load-CMOD record is shown to be insensitive to the specimen thickness, and thus can be used for testing specimen with any thickness. The effects of in-plane and out-of-plane constraint on the crack tip stress triaxiality are also quantified, so that when experimental J value is estimated according to the procedure recommended in this paper, the corresponding crack tip stress triaxiality can be estimated. Moreover, it is found that the out-of-plane constraint effect is related to the in-plane constraint effect.

Out-of-plane ductile failure of notch: Evaluation of Equivalent Material Concept

  • Torabi, A.R.;Saboori, Behnam;Kamjoo, M.R.
    • Structural Engineering and Mechanics
    • /
    • v.75 no.5
    • /
    • pp.559-569
    • /
    • 2020
  • In the present study, the fracture toughness of U-shaped notches made of aluminum alloy Al7075-T6 under combined tension/out-of-plane shear loading conditions (mixed mode I/III) is studied by theoretical and experimental methods. In the experimental part, U-notched test samples are loaded using a previously developed fixture under mixed mode I/III loading and their load-carrying capacity (LCC) is measured. Then, due to the presence of considerable plasticity in the notch vicinity at crack initiation instance, using the Equivalent Material Concept (EMC) and with the help of the point stress (PS) and mean stress (MS) brittle failure criteria, the LCC of the tested samples is predicted theoretically. The EMC equates a ductile material with a virtual brittle material in order to avoid performing elastic-plastic analysis. Because of the very good match between the EMC-PS and EMC-MS combined criteria with the experimental results, the use of the combination of the criteria with EMC is recommended for designing U-notched aluminum plates in engineering structures. Meanwhile, because of nearly the same accuracy of the two criteria and the simplicity of the PS criterion relations, the use of EMC-PS failure model in design of notched Al7075-T6 components is superior to the EMC-MS criterion.

A Study on the Safety Evaluation of Design for Piping Materials (II) (배관용재료의 설계시 안전성 평가에 관한 연구(II))

  • 김복기
    • Journal of the Korean Society of Safety
    • /
    • v.10 no.3
    • /
    • pp.3-10
    • /
    • 1995
  • For most engineering materials are influenced by the dominant mechanism resisting crack extention under large scale yielding conditions. Continuum mechanics analysis shows that fracture toughness, in addition to depending on young's modulus, flow stress strain hardening exponent, and yield strain, should be nearly proportoinal to the effective fracture ductility obtained for the stress state characteristic for region ahead of the crack; plane stress or plane strain. It's known that, in most ductile materials, crack propagation of the material strongly governed by the $J_{IC}$ value, which is still difficult to determine for it's complicate and treble-some determinative process. This paper, on the assumption that, initiation of crack tip strain field reaches on the relationships between the critical value of J-integral ($J_{IC}$) and the local fracture strain(${\varepsilon}_c$) in uniaxial tensile test in the region of maximun reduction areas was described.

  • PDF