• Title/Summary/Keyword: Plane of array

Search Result 385, Processing Time 0.026 seconds

Real-time Measurement and Compensation of Motion Errors Using Extended Twyman-Green Interferometry (확장 트와이만-그린 간섭계를 이용한 운동 오차의 실시간 측정 및 보상)

  • 오정석;배은덕;김승우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.288-291
    • /
    • 2003
  • This paper presents an extended Twyman-Green interferometry that enables simultaneous and real-time measurement of 5-DOF motion errors of the translational moving stage. This method uses a null balancing technique in which two plane mirrors are used as target mirrors to generate an interferometric fringe utilizing the optical principles of Twyman-Green interferometry. Fringe is detected by 2D photodiode array for high-speed measurement. Errors are then independently suppressed by activation of piezoelectric actuators through real-time feedback control while the machine axis is moving. Experimental results demonstrate that a machine axis can be controlled with motion errors about 10 nm in linear displacement, 0.15 arcsec in angular displacement

  • PDF

Performance Evaluation of Automatic Self-Cleaning Filter System using Twin-Fluid Nozzles for Air Cleaning in the Subway Stations (지하철 공기청정을 위한 2유체노즐형 자동세정 공기청정 시스템 개발에 관한 연구)

  • Ahn, Y.C.;Lee, J.K.
    • Journal of ILASS-Korea
    • /
    • v.9 no.3
    • /
    • pp.15-21
    • /
    • 2004
  • The removal of the dusts in the subway stations, tunnels, factories and buildings becomes issue for comfortable indoor and outdoor conditions. There has been used an automatic self-cleaning filter system to collect the dusts. In general, the collected particles are removed by water spray nozzles. The new design for improving the cleaning efficiency of collected dusts and reducing the supplied water is the concept of the plane array of demister filters and the twin-fluid nozzle for mixing compressed air and water in the automatic self-cleaning filter system. Results show that the cleaning efficiency of twin-nozzle filter systems is 99.1%, compared to 47% in the conventional filter system. Therefore the automatic self-cleaning filter system using twin-fluid nozzle filter systems reduces water supplied in the filter system, and increases cleaning efficiency and drying efficiency.

  • PDF

Fabrication of High Performance and Low Power Readout Integrated Circuit for $320{\times}256$ IRFPA ($320{\times}256$ 초점면배열 적외선 검출기를 위한 고성능 저 전력 신호취득회로의 제작)

  • Kim, Chi-Yeon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.152-159
    • /
    • 2007
  • This paper describes the design, fabrication, and measurement of ROIC(ReadOut Integrated Circuit) for $320{\times}256$ IRFPA(InfraRed Focal Plane Array). A ROIC plays an important role that transfer photocurrent generated in a detector device to thermal image system. Recently, the high performance and low power ROIC adding various functions is being required. According to this requirement, the design of ROIC focuses on 7MHz or more pixel rate, low power dissipation, anti-blooming, multi-channel output mode, image reversal, various windowing, and frame CDS(Correlated Double Sampling). The designed ROIC was fabricated using $0.6{\mu}m$ double-poly triple-metal Si CMOS process. ROIC function factors work normally, and the power dissipation of ROIC is 33mW and 90.5mW at 7.5MHz pixel rate in the 1-channel and 4-channel operation, respectively.

3D Integral Imaging Display using Axially Recorded Multiple Images

  • Cho, Myungjin;Shin, Donghak
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.5
    • /
    • pp.410-414
    • /
    • 2013
  • In this paper, we propose a 3D display method combining a pickup process using axially recorded multiple images and an integral imaging display process. First, we extract the color and depth information of 3D objects for displaying 3D images from axially recorded multiple 2D images. Next, using the extracted depth map and color images, elemental images are computationally synthesized based on a ray mapping model between 3D space and an elemental image plane. Finally, we display 3D images optically by an integral imaging system with a lenslet array. To show the usefulness of the proposed system, we carry out optical experiments for 3D objects and present the experimental results.

Precision Shape Modeling by Z-Map Model (Z-map 모델을 이용한 정밀형상 모델링)

  • 박정환;정연찬;최병규
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.11
    • /
    • pp.180-188
    • /
    • 1998
  • Z-map is a special form of discrete nonparametric representation in which the height values at grid points on the xy-plane are stored as a 2D array z[i.j]. While z-map is the simplest form of representing sculptured surfaces and it is the most versatile scheme for modeling nonparametric objects, its practical application in industry (eg, tool-path generation) aroused much controversy over its weaknesses ; accuracy, singularity (eg, vertical wall), and some excessive storage needs. Although z-map has such limitations, much research on the application of z-map can be found in various articles. However, research on the systematic analysis of sculptured surface shape representation via z-map model is rather rare. Presented in this paper are the following: shape modeling power of the simple z-map model, exact (within tolerance) B-map representation of sculptured surfaces which have some feature-shapes such as vertical-walls and real sharp-edges by adopting some complementary B-map models, and some application examples.

  • PDF

Enhancement in Isolation among Collinearly Placed Microstrip Patch Antenna Arrays

  • Irfan Ali, Tunio;Hernan, Dellamaggiora;Umair, Saeed;Ayaz Ahmed, Hoshu;Ghulam, Hussain
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.1
    • /
    • pp.120-124
    • /
    • 2023
  • Strong surface waves among collinearly arranged patch antenna arrays pose unwanted inter element coupling particularly when high permittivity dielectric materials are used. In order to avert those waves, a novel Defected Ground Structure (DGS) is carved out systematically between two E-plane patch antenna elements. The introduced low profile μ shaped structure consequently improves impedance bandwidth and reflection coefficient by suppressing surface waves considerably. Parametric simulation results are analyzed and discussed.

Waveguide Slot Array Antenna for Heliborne MTD Radar (헬리콥터 탑재 MTD 레이다용 도파관 슬롯배열 안테나)

  • Kim Dong-Seok;Han In-Hee;Gwak Young-Gil;Shin Keun-Sup
    • Proceedings of the IEEK Conference
    • /
    • 2004.06a
    • /
    • pp.139-142
    • /
    • 2004
  • X-band Waveguide slot way antenna is developed for heliborne MTD radar applications. The antenna is composed of multi-layer waveguide structures. Each of them has it's own functions, such as, radiation, power/phase distribution, coupling, etc. Broad-wall offset slots are used for radiators, inclined slots on broad-wall for power distribution to radiating(branch) waveguide, some kind of coaxial probe structures for in-phase coupling and H-plane T-junction power dividers. Antenna is realized by precision machining and careful assembly. It is tested and measured by 3m${\times}$l.7m planar near-field probe, which is set-up in MTG. Far-field calculations have good agreement in tolerable bounds. Special but necessary process such as brazing, will increase the accuracy and performance. Results show promising possibilities of future applications for real systems.

  • PDF

Projection-Type Integral Imaging Using a Pico-projector

  • Yang, Yucheol;Min, Sung-Wook
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.6
    • /
    • pp.714-719
    • /
    • 2014
  • A pico-projector is a compact and mobile projector that has an infinite focus. We apply the pico-projector to a projection-type integral imaging system, which can expand the image depth to form multiple central depth planes. In a projection-type integral imaging system, the image flipping problem arises because the expanded elemental images pass through a lens array. To solve this problem, we propose the ray tracing of a pico-projector at a central depth plane and compensate the elemental image using a pixel-mapping process. Experiments to verify the proposed method are performed, and the results are presented.

Real-time Compensation of Motion Errors Using Extended Twyman-Green Interferometry (확장 트와이만-그린 간섭계를 이용한 운동 오차의 실시간 보상)

  • 배은덕;오정석;김승우
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.10
    • /
    • pp.112-119
    • /
    • 2003
  • This paper presents an extended Twyman-Green interferometry that enables simultaneous and real-time measurement of 5-DOF motion errors of the translational moving stage. This method uses a null balancing technique in which two plane mirrors are used as target mirrors to generate an interferometric fringe utilizing the optical principles of Twyman-Green interferometry. Fringe is detected by 2D photodiode array for high-speed measurement. Errors are then independently suppressed by activation of piezoelectric actuators through real-time feedback control while the machine axis is moving. Experimental results demonstrate that a machine axis can be controlled with motion errors about 10 nm in linear displacement, 0.15 arcsec in angular displacement.

Improvement and quasi optical analysis of wide band prototype feedhorn for ASTE focal plane array

  • Lee, Bangwon;Gonzalez, Alvaro;Lee, Jung-won
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.1
    • /
    • pp.57.1-57.1
    • /
    • 2017
  • As an upgrade we report the current ASTE ultra-wideband corrugated horn design. The length of the feedhorn gets shortened from 12.5 mm to 11 mm, and it shows better side lobe level at the far-field patterns compared with the previous design. We looked into possible quasi-optical solution to match the feedhorn beam to the optics of the current ASTE telescope, starting from frequency-independent solution using two ellipsoidal mirrors to which wideband performance of the feedhorn naturally fits. We used a commercial physical optics package (GRASP) with an user-defined optimizer to give physical constraints to evaluated optical designs for highest efficiency.

  • PDF