• 제목/요약/키워드: Plane frame analysis

검색결과 181건 처리시간 0.025초

유한변형과 굽힘효과가 고려된 3차원 보-기둥요소에 의한 공간구조물의 분기좌굴해석 (A Bifurcation Analysis of Space Structures by Using 3D Beam-Column Element Considering Finite Deformations and Bowing Effect)

  • 이경수;한상을
    • 한국전산구조공학회논문집
    • /
    • 제22권4호
    • /
    • pp.307-314
    • /
    • 2009
  • 본 논문은 기하학적 비선형성을 가진 보존적 단일 하중 매개변수의 탄성 상태 공간구조의 탄성 분기 좌굴해석을 위한 공간프레임의 정식화, 분기경로 추적을 위한 pin-pointing 및 분기경로 전환알고리즘을 기술하고 있다. 복잡한 좌굴 후 거동특성을 파악하기 위한 본 연구의 공간프레임요소는 오일러리안 좌표계에 의한 유한회전이론으로 강체변형을 계산하였고, 굽힘효과가 고려된 보-기둥식을 적용하여 적은 개수의 요소의 사용으로도 정해를 얻을 수 있도록 하였으며, 후좌굴해석과 같은 고도의 비선형해석을 수행하기 위해 기하강성행렬의 모멘트에 대한 영향을 고려하였다. 분기좌굴에 의한 좌굴후 평형상태인 주경로와 분기경로의 pin-pointing 알고리즘으로 특이점을 계산하였으며, 고유치 및 고유모드를 이용한 본 연구의 수치알고리즘에 의해 분기경로를 추적하였다. 분기좌굴 해석예제로 평면프레임, 평면아치 및 공간돔에 대한 분기좌굴 해석을 수행하여 본문에서 제시한 수치해석법의 정확성 및 적용성을 검증한다.

캐드시스템을 이용한 철골구조물의 설계에 관한 연구 (A Study on the Steel Frame Design using Computer Aided Design System)

  • 조병철;이수곤
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1992년도 가을 학술발표회 논문집
    • /
    • pp.121-126
    • /
    • 1992
  • This Paper presents a development of a CAD system for interactive design of steel frames. The adopted building code for structural design is "Steel Building Codes" enacted by the Architectural Institute of Korea in 1973. The selected member sections, therefore, are domestic rolled sections - especially, H shapes. The authors aim at a development of an integrated computer programs repeating plane frame analysis and design of members until minimum weight design condition is satisfied. This program also provides various section change functions to improve the shortcomings of automatic design.ic design.

  • PDF

In-plane structural analysis of blind-bolted composite frames with semi-rigid joints

  • Waqas, Rumman;Uy, Brian;Wang, Jia;Thai, Huu-Tai
    • Steel and Composite Structures
    • /
    • 제31권4호
    • /
    • pp.373-385
    • /
    • 2019
  • This paper presents a useful in-plane structural analysis of low-rise blind-bolted composite frames with semi-rigid joints. Analytical models were used to predict the moment-rotation relationship of the composite beam-to-column flush endplate joints that produced accurate and reliable results. The comparisons of the analytical model with test results in terms of the moment-rotation response verified the robustness and reliability of the model. Abaqus software was adopted to conduct frame analysis considering the material and geometrical non-linearities. The flexural behaviour of the composite frames was studied by applying the lateral loads incorporating wind and earthquake actions according to the Australian standards. A wide variety of frames with a varied number of bays and storeys was analysed to determine the bending moment envelopes under different load combinations. The design models were finalized that met the strength and serviceability limit state criteria. The results from the frame analysis suggest that among lateral loads, wind loads are more critical in Australia as compared to the earthquake loads. However, gravity loads alone govern the design as maximum sagging and hogging moments in the frames are produced as a result of the load combination with dead and live loads alone. This study provides a preliminary analysis and general understanding of the behaviour of low rise, semi-continuous frames subjected to lateral load characteristics of wind and earthquake conditions in Australia that can be applied in engineering practice.

Analytical study on the influence of distributed beam vertical loading on seismic response of frame structures

  • Mergos, P.E.;Kappos, A.J.
    • Earthquakes and Structures
    • /
    • 제5권2호
    • /
    • pp.239-259
    • /
    • 2013
  • Typically, beams that form part of structural systems are subjected to vertical distributed loading along their length. Distributed loading affects moment and shear distribution, and consequently spread of inelasticity, along the beam length. However, the finite element models developed so far for seismic analysis of frame structures either ignore the effect of vertical distributed loading on spread of inelasticity or consider it in an approximate manner. In this paper, a beam-type finite element is developed, which is capable of considering accurately the effect of uniform distributed loading on spreading of inelastic deformations along the beam length. The proposed model consists of two gradual spread inelasticity sub-elements accounting explicitly for inelastic flexural and shear response. Following this approach, the effect of distributed loading on spreading of inelastic flexural and shear deformations is properly taken into account. The finite element is implemented in the seismic analysis of plane frame structures with beam members controlled either by flexure or shear. It is shown that to obtain accurate results the influence of distributed beam loading on spreading of inelastic deformations should be taken into account in the inelastic seismic analysis of frame structures.

Construction stage effect on the dynamic characteristics of RC frame using operational modal analysis

  • Arslan, Mehmet Emin;Durmus, Ahmet
    • Computers and Concrete
    • /
    • 제12권1호
    • /
    • pp.79-90
    • /
    • 2013
  • In this study, dynamic characteristics such as natural frequencies, mode shapes and damping ratios of RC frame is determined for different construction stages using Operational Modal Analyses method under ambient vibration. Full scaled, one bay and one story RC frames are selected as an application for different construction stages such as plane, brick in-filled and brick in-filled with plaster. The RC frame is vibrated by natural excitations with small impact effects and the response signals are measured using sensitive accelerometers during ambient vibration tests. Measurement time-frequency span and effective mode number are determined by considering similar studies in literature. Sensitive seismic accelerometers are used to collect signals obtained from the experimental tests. To obtain experimental dynamic characteristics, output-only system identification technique is employed namely; Enhanced Frequency Domain Decomposition technique in the frequency domain. It is demonstrated that the ambient vibration measurements are enough to identify the most significant modes of RC frames.

단경간 일체식교대 교량의 거동에 대한 해석적 연구 (Analytical Investigation on the Behavior of Simple Span Integral Abutment Bridge)

  • 홍정희;정재호;박종면;유성근;윤순종
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.99-106
    • /
    • 2002
  • This paper presents an analytical investigation on the behavior of simple span integral abutment bridge. An integral abutment bridge is a simple span or multiple span continuous deck type bridge having the deck integral with the abutment wall. Although the temperature variation and earth pressure are the major attributor to the total stress in integral abutment bridge, the superstructure has been designed by modeling it as a simple or continuous beam In order to investigate the effect of temperature change and earth pressure on the superstructure of integral bridge, the simple span integral bridge is modeled as a plane frame element. Performing frame analysis, the variations of bending moment and axial force of superstructure due to the various loading combination are investigated with respect to the flexural rigidity of piles, and the bending moment and axial force obtained by frame analysis are compared with the maximum bending moment obtained by conventional design method and initial prestressing force respectively.

  • PDF

Soil-structure interaction effects on the seismic response of multistory frame structure

  • Botic, Amina;Hadzalic, Emina;Balic, Anis
    • Coupled systems mechanics
    • /
    • 제11권5호
    • /
    • pp.373-387
    • /
    • 2022
  • In this paper,soil-structure interaction effects on the seismic response of multistory frame structure on raft foundation are numerically analyzed. The foundation soil profile is assumed to consists of a clay layer of variable thicknessresting on bedrock. Amodified plane-strain numerical model isformed in the software Plaxis, and both free vibration analysis, and earthquake analysis for a selected ground motion accelerogram are performed. The behavior of the structure is assumed to be linear elastic with Rayleigh viscous damping included. The behavior of the clay layer is modeled with a Hardening soil model with small strain stiffness. The computed results in terms of fundamental period and structural horizontal displacementsfor the case of fixed base and for different thicknesses of clay layer are presented, compared, and discussed.

An application of large displacement limit analysis to frame structures

  • Challamel, Noel
    • Structural Engineering and Mechanics
    • /
    • 제33권2호
    • /
    • pp.159-177
    • /
    • 2009
  • The aim of this paper is to give a rigorous framework for the interpretation of limit analysis results including large displacements. The presentation is oriented towards unidimensional media (beams) but two-dimensional (plates) or three-dimensional media are also concerned. A single-degree-of-freedom system is first considered: it shows the basic phenomena of large displacement limit analysis or second-order limit analysis. The results are compared to those of a continuous system and the differences between both systems are discussed. Theoretical results are obtained using the kinematical approach of limit analysis. An admissible load-displacement plane is then defined, according to the yield design theory. The methodology used is applied to frame structures. The presented results are nevertheless different from those already published in the literature, as the virtual displacement field can be distinguished from the displacement field at collapse. The simplicity of large displacement limit analysis makes it attractive for practical engineering applications. The load-displacement upper bound can be used for instance in the optimal design of steel frames in seismic areas.

Vibration analysis of cracked frame structures

  • Ibrahim, Ahmed M.;Ozturk, Hasan;Sabuncu, Mustafa
    • Structural Engineering and Mechanics
    • /
    • 제45권1호
    • /
    • pp.33-52
    • /
    • 2013
  • In this study, the effects of crack depth and crack location on the in-plane free vibration of cracked frame structures have been investigated numerically by using the Finite Element Method. For the rectangular cross-section beam, a crack element is developed by using the principles of fracture mechanics. The effects of crack depth and location on the natural frequency of multi-bay and multi-store frame structures are presented in 3D graphs. The comparison between the present work and the results obtained from ANSYS shows a very good agreement.

Static and dynamic stability of cracked multi-storey steel frames

  • Sabuncu, Mustafa;Ozturk, Hasan;Yashar, Ahmed
    • Structural Engineering and Mechanics
    • /
    • 제58권1호
    • /
    • pp.103-119
    • /
    • 2016
  • Multi-storey frame structures are frequently exposed to static and dynamic forces. Therefore analyses of static (buckling) and dynamic stability come into prominence for these structures. In this study, the effects of number of storey, static and dynamic load parameters, crack depth and crack location on the in-plane static and dynamic stability of cracked multi-storey frame structures subjected to periodic loading have been investigated numerically by using the Finite Element Method. A crack element based on the Euler beam theory is developed by using the principles of fracture mechanics. The equation of motion for the cracked multi-storey frame subjected to periodic loading is achieved by Lagrange's equation. The results obtained from the stability analysis are presented in three dimensional graphs and tables.