• Title/Summary/Keyword: Plane frame analysis

Search Result 182, Processing Time 0.027 seconds

A Bifurcation Analysis of Space Structures by Using 3D Beam-Column Element Considering Finite Deformations and Bowing Effect (유한변형과 굽힘효과가 고려된 3차원 보-기둥요소에 의한 공간구조물의 분기좌굴해석)

  • Lee, Kyung-Soo;Han, Sang-Eul
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.4
    • /
    • pp.307-314
    • /
    • 2009
  • The present paper briefly describes the space frame element and the fundamental strategies in computational elastic bifurcation theory of geometrically nonlinear, single load parameter conservative elastic spatial structures. A method for large deformation(rotation) analysis of space frame is based on an eulerian formulation, which takes into consideration the effects of large joint translations and rotations with finite deformation(rotation). The local member force-deformation relationships are based on the beam-column approach, and the change in member chord lengths caused by axial strain and flexural bowing are taken into account. and the derived geometric stiffness matrix is unsymmetric because of the fact that finite rotations are not commutative under addition. To detect the singular point such as bifurcation point, an iterative pin-pointing algorithm is proposed. And the path switching mode for bifurcation path is based on the non-negative eigen-value and it's corresponding eigen-vector. Some numerical examples for bifurcation analysis are carried out for a plane frame, plane circular arch and space dome structures are described.

A Study on the Steel Frame Design using Computer Aided Design System (캐드시스템을 이용한 철골구조물의 설계에 관한 연구)

  • 조병철;이수곤
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1992.10a
    • /
    • pp.121-126
    • /
    • 1992
  • This Paper presents a development of a CAD system for interactive design of steel frames. The adopted building code for structural design is "Steel Building Codes" enacted by the Architectural Institute of Korea in 1973. The selected member sections, therefore, are domestic rolled sections - especially, H shapes. The authors aim at a development of an integrated computer programs repeating plane frame analysis and design of members until minimum weight design condition is satisfied. This program also provides various section change functions to improve the shortcomings of automatic design.ic design.

  • PDF

In-plane structural analysis of blind-bolted composite frames with semi-rigid joints

  • Waqas, Rumman;Uy, Brian;Wang, Jia;Thai, Huu-Tai
    • Steel and Composite Structures
    • /
    • v.31 no.4
    • /
    • pp.373-385
    • /
    • 2019
  • This paper presents a useful in-plane structural analysis of low-rise blind-bolted composite frames with semi-rigid joints. Analytical models were used to predict the moment-rotation relationship of the composite beam-to-column flush endplate joints that produced accurate and reliable results. The comparisons of the analytical model with test results in terms of the moment-rotation response verified the robustness and reliability of the model. Abaqus software was adopted to conduct frame analysis considering the material and geometrical non-linearities. The flexural behaviour of the composite frames was studied by applying the lateral loads incorporating wind and earthquake actions according to the Australian standards. A wide variety of frames with a varied number of bays and storeys was analysed to determine the bending moment envelopes under different load combinations. The design models were finalized that met the strength and serviceability limit state criteria. The results from the frame analysis suggest that among lateral loads, wind loads are more critical in Australia as compared to the earthquake loads. However, gravity loads alone govern the design as maximum sagging and hogging moments in the frames are produced as a result of the load combination with dead and live loads alone. This study provides a preliminary analysis and general understanding of the behaviour of low rise, semi-continuous frames subjected to lateral load characteristics of wind and earthquake conditions in Australia that can be applied in engineering practice.

Analytical study on the influence of distributed beam vertical loading on seismic response of frame structures

  • Mergos, P.E.;Kappos, A.J.
    • Earthquakes and Structures
    • /
    • v.5 no.2
    • /
    • pp.239-259
    • /
    • 2013
  • Typically, beams that form part of structural systems are subjected to vertical distributed loading along their length. Distributed loading affects moment and shear distribution, and consequently spread of inelasticity, along the beam length. However, the finite element models developed so far for seismic analysis of frame structures either ignore the effect of vertical distributed loading on spread of inelasticity or consider it in an approximate manner. In this paper, a beam-type finite element is developed, which is capable of considering accurately the effect of uniform distributed loading on spreading of inelastic deformations along the beam length. The proposed model consists of two gradual spread inelasticity sub-elements accounting explicitly for inelastic flexural and shear response. Following this approach, the effect of distributed loading on spreading of inelastic flexural and shear deformations is properly taken into account. The finite element is implemented in the seismic analysis of plane frame structures with beam members controlled either by flexure or shear. It is shown that to obtain accurate results the influence of distributed beam loading on spreading of inelastic deformations should be taken into account in the inelastic seismic analysis of frame structures.

Construction stage effect on the dynamic characteristics of RC frame using operational modal analysis

  • Arslan, Mehmet Emin;Durmus, Ahmet
    • Computers and Concrete
    • /
    • v.12 no.1
    • /
    • pp.79-90
    • /
    • 2013
  • In this study, dynamic characteristics such as natural frequencies, mode shapes and damping ratios of RC frame is determined for different construction stages using Operational Modal Analyses method under ambient vibration. Full scaled, one bay and one story RC frames are selected as an application for different construction stages such as plane, brick in-filled and brick in-filled with plaster. The RC frame is vibrated by natural excitations with small impact effects and the response signals are measured using sensitive accelerometers during ambient vibration tests. Measurement time-frequency span and effective mode number are determined by considering similar studies in literature. Sensitive seismic accelerometers are used to collect signals obtained from the experimental tests. To obtain experimental dynamic characteristics, output-only system identification technique is employed namely; Enhanced Frequency Domain Decomposition technique in the frequency domain. It is demonstrated that the ambient vibration measurements are enough to identify the most significant modes of RC frames.

Analytical Investigation on the Behavior of Simple Span Integral Abutment Bridge (단경간 일체식교대 교량의 거동에 대한 해석적 연구)

  • 홍정희;정재호;박종면;유성근;윤순종
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.99-106
    • /
    • 2002
  • This paper presents an analytical investigation on the behavior of simple span integral abutment bridge. An integral abutment bridge is a simple span or multiple span continuous deck type bridge having the deck integral with the abutment wall. Although the temperature variation and earth pressure are the major attributor to the total stress in integral abutment bridge, the superstructure has been designed by modeling it as a simple or continuous beam In order to investigate the effect of temperature change and earth pressure on the superstructure of integral bridge, the simple span integral bridge is modeled as a plane frame element. Performing frame analysis, the variations of bending moment and axial force of superstructure due to the various loading combination are investigated with respect to the flexural rigidity of piles, and the bending moment and axial force obtained by frame analysis are compared with the maximum bending moment obtained by conventional design method and initial prestressing force respectively.

  • PDF

Soil-structure interaction effects on the seismic response of multistory frame structure

  • Botic, Amina;Hadzalic, Emina;Balic, Anis
    • Coupled systems mechanics
    • /
    • v.11 no.5
    • /
    • pp.373-387
    • /
    • 2022
  • In this paper,soil-structure interaction effects on the seismic response of multistory frame structure on raft foundation are numerically analyzed. The foundation soil profile is assumed to consists of a clay layer of variable thicknessresting on bedrock. Amodified plane-strain numerical model isformed in the software Plaxis, and both free vibration analysis, and earthquake analysis for a selected ground motion accelerogram are performed. The behavior of the structure is assumed to be linear elastic with Rayleigh viscous damping included. The behavior of the clay layer is modeled with a Hardening soil model with small strain stiffness. The computed results in terms of fundamental period and structural horizontal displacementsfor the case of fixed base and for different thicknesses of clay layer are presented, compared, and discussed.

An application of large displacement limit analysis to frame structures

  • Challamel, Noel
    • Structural Engineering and Mechanics
    • /
    • v.33 no.2
    • /
    • pp.159-177
    • /
    • 2009
  • The aim of this paper is to give a rigorous framework for the interpretation of limit analysis results including large displacements. The presentation is oriented towards unidimensional media (beams) but two-dimensional (plates) or three-dimensional media are also concerned. A single-degree-of-freedom system is first considered: it shows the basic phenomena of large displacement limit analysis or second-order limit analysis. The results are compared to those of a continuous system and the differences between both systems are discussed. Theoretical results are obtained using the kinematical approach of limit analysis. An admissible load-displacement plane is then defined, according to the yield design theory. The methodology used is applied to frame structures. The presented results are nevertheless different from those already published in the literature, as the virtual displacement field can be distinguished from the displacement field at collapse. The simplicity of large displacement limit analysis makes it attractive for practical engineering applications. The load-displacement upper bound can be used for instance in the optimal design of steel frames in seismic areas.

Vibration analysis of cracked frame structures

  • Ibrahim, Ahmed M.;Ozturk, Hasan;Sabuncu, Mustafa
    • Structural Engineering and Mechanics
    • /
    • v.45 no.1
    • /
    • pp.33-52
    • /
    • 2013
  • In this study, the effects of crack depth and crack location on the in-plane free vibration of cracked frame structures have been investigated numerically by using the Finite Element Method. For the rectangular cross-section beam, a crack element is developed by using the principles of fracture mechanics. The effects of crack depth and location on the natural frequency of multi-bay and multi-store frame structures are presented in 3D graphs. The comparison between the present work and the results obtained from ANSYS shows a very good agreement.

Static and dynamic stability of cracked multi-storey steel frames

  • Sabuncu, Mustafa;Ozturk, Hasan;Yashar, Ahmed
    • Structural Engineering and Mechanics
    • /
    • v.58 no.1
    • /
    • pp.103-119
    • /
    • 2016
  • Multi-storey frame structures are frequently exposed to static and dynamic forces. Therefore analyses of static (buckling) and dynamic stability come into prominence for these structures. In this study, the effects of number of storey, static and dynamic load parameters, crack depth and crack location on the in-plane static and dynamic stability of cracked multi-storey frame structures subjected to periodic loading have been investigated numerically by using the Finite Element Method. A crack element based on the Euler beam theory is developed by using the principles of fracture mechanics. The equation of motion for the cracked multi-storey frame subjected to periodic loading is achieved by Lagrange's equation. The results obtained from the stability analysis are presented in three dimensional graphs and tables.