• Title/Summary/Keyword: Plane frame analysis

Search Result 181, Processing Time 0.023 seconds

Flow Analysis of a Low-Noise Turbo Fan for a Vacuum Cleaner (진공청소기용 저소음 터보팬 내부 유동 해석)

  • Lee, Ki-Choon;Kim, Chang-Jun;Hur, Nahmkeon;Jeon, Wan-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.6 no.4 s.21
    • /
    • pp.14-20
    • /
    • 2003
  • In this study an analysis of the flow characteristics in three types of turbo-fans for a vacuum cleaner was performed by using CFD. The characteristics of three models calculated for various rotating speed for flow rates are obtained and compared with measured data. The mixing plane approach is applied to compute the flow between impeller and diffuser. The results show that the model that is modified to reduce fan noise gives stable flow characteristics in operating range than the original model, with both models show similar performance characteristics at the range of high flow rate. Since in the modified model it takes much longer for an impeller blade to pass a diffuser blade than in the original model, and the peak pressure at BPF can be relieved, it is anticipated that the modified model give much lower noise level with similar performance than the original one, which remains to be verified by unsteady computation and measurements. The good agreement between the predictions and measurement results confirms the validity of this study.

CFD Analysis of a Partial Admission Turbine Using a Frozen Rotor Method

  • Noh, Jun-Gu;Lee, Eun-Seok;Kim, Jinhan;Lee, Dae-Sung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.861-866
    • /
    • 2004
  • A numerical flow analysis has been performed on the partial admission turbine of KARI turbopump to support the aerodynamic and structural dynamic assessments. The flow-field in a partial admission turbine is essentially three dimensional and unsteady because of a tip clearance and a finite number of nozzles. Therefore the mixing plane method is generally not appropriate. To avoid heavy computational load due to an unsteady three dimensional calculation, a frozen rotor method was implemented in steady calculation. It adopted a rotating frame in the grid block of a rotor blade by adding some source terms in governing equations. Its results were compared with a mixing plane method. The frozen rotor method can detect the variation of flow-field dependent upon the blade's circumferential position relative to the nozzle. It gives a idea of wake loss mechanism starting from the lip of a nozzle. This wake loss was assumed to be one of the most difficult issues in turbine designers. Thus, the frozen rotor approach has proven to be an efficient and robust tool in design of a partial admission turbine.

  • PDF

Time Domain Seismic Response Analysis of Nonlinear Soil-Pile-Structure Interaction System using Inverse FFT of Dynamic Fundamental Solution (동적기본해의 역FFT에 의한 비선형 지반-말뚝-구조계의 시간영역 지진응답 해석)

  • 김문겸;임윤묵;조석호;박종헌;정대희
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.125-132
    • /
    • 2002
  • In this study, a numerical method is developed for nonlinear analysis for soil-pile-structure interaction system in time domain. Finite elements considering material nonlinearity are used for the near field and boundary elements for the far field. In the near field, frame elements are used for modeling a pile and plane-strain elements for surrounding soil and superstructure. In. the far field, boundary element formulation using the dynamic fundamental solution is adopted and coupled with the near field. Transformation of stiffness matrices of boundary elements into time domain is performed by inverse FFT. Stiffness matrices in the near field and far field are coupled. Newmark direct time integration method is applied. Developed soil-pile-structure interaction analysis method is verified with available literature and commercial code. Also, parametric studies by developed numerical method are performed. And seismic response analysis is performed using actual earthquake records.

  • PDF

Behavior of symmetrically haunched non-prismatic members subjected to temperature changes

  • Yuksel, S. Bahadir
    • Structural Engineering and Mechanics
    • /
    • v.31 no.3
    • /
    • pp.297-314
    • /
    • 2009
  • When the temperature of a structure varies, there is a tendency to produce changes in the shape of the structure. The resulting actions may be of considerable importance in the analysis of the structures having non-prismatic members. Therefore, this study aimed to investigate the modeling, analysis and behavior of the non-prismatic members subjected to temperature changes with the aid of finite element modeling. The fixed-end moments and fixed-end forces of such members due to temperature changes were computed through a comprehensive parametric study. It was demonstrated that the conventional methods using frame elements can lead to significant errors, and the deviations can reach to unacceptable levels for these types of structures. The design formulas and the dimensionless design coefficients were proposed based on a comprehensive parametric study using two-dimensional plane-stress finite element models. The fixed-end actions of the non-prismatic members having parabolic and straight haunches due to temperature changes can be determined using the proposed approach without necessitating a detailed finite element model solution. Additionally, the robust results of the finite element analyses allowed examining the sources and magnitudes of the errors in the conventional analysis.

An Elastic Static Analysis of Curved Girder Bridges by the Displacement Method (변위법(變位法)에 의한 곡선형교(曲線桁橋)의 정적탄성해석(靜的彈性解析))

  • Chung, Jin Hwan;Chang, Sung Pil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.6 no.2
    • /
    • pp.121-131
    • /
    • 1986
  • The stiffness matrix of circularly curved frame elements including the warping effects is formulated by the solutions of vlasov's differential equations, and the procedure for the elastic static analysis of curved girder systems by the displacement method is presented. The validity of this method has been demonstrated by comparing the analysis results with other solutions. And if the tangential lines of the two frame element axes connected at any nodal point coincide, the transformation to the global coordinate system can be omitted when we analyze the structures consisting of circularly curved elements. The theory introduced in this thesis can be applied with sufficient accuracy to the structures built up with horizontally circular curved frame elements which have closed or open cross sections and are symmetric to the axis perpendicular to the plane of the curvature, such as prestressed concrete box girder bridges.

  • PDF

The new criterion on performance-based design and application to recent earthquake codes

  • Azer A. Kasimzade;Emin Nematli;Mehmet Kuruoglu
    • Earthquakes and Structures
    • /
    • v.24 no.1
    • /
    • pp.11-20
    • /
    • 2023
  • "Performance-based design (PBD)" is based on designing a structure with choosing a performance target under design criteria to increase the structure's resistance against earthquake effect. The plastic hinge formation is determined as one of the fundamental data in finite elements nonlinear analysis to distinguish the condition of the structure where more significant potential damage could occur. If the number of plastic hinges in the structure is increased, the total horizontal load capability of the structure is increased, also. Theoretically, when the number of plastic hinges of the plane frame structure reaches "the degree of hyperstaticity plus one", the structure will reach the capability of the largest ultimate horizontal load. As the number of plastic hinges to be formed in the structure increases towards the theoretical plastic hinge number (TPHN), the total horizontal load capability of the structure increases, proportionally. In the previous studies of the authors, the features of examining the new performance criteria were revealed and it was formulated as follows "Increase the total number of plastic hinges to be formed in the structure to the number of theoretical plastic hinges as much as possible and keep the structure below its targeted performance with related codes". With this new performance criterion, it has been shown that the total lateral load capability of the building is higher than the total lateral load capability obtained with the traditional PBD method by the FEMA 440 and FEMA 356 design guides. In this study, PBD analysis results of structures with frame carrier systems are presented in the light of the Turkey Building Earthquake Code 2019. As a result of this study, it has been shown that the load capability of the structure in the examples of structures with frame carrier system increases by using this new performance criterion presented, compared to the results of the examination with the traditional PBD method in TBEC 2019.

FE Analysis of Hydroforming Process for Flange Forming (액압 성형 공정 시 플랜지부 형성을 위한 FE 해석)

  • Choi, M.K.;Joo, B.D.;Moon, Y.H.
    • Transactions of Materials Processing
    • /
    • v.19 no.1
    • /
    • pp.32-37
    • /
    • 2010
  • Hydroforming has attracted a great deal of attention in the manufacturing industries for vehicles and transportation systems. Hydroforming technology contributes to weight reduction, increased strength, improved quality and reduced tooling cost. Hydroformed automotive parts used as structure components in vehichle body frame often have to be structurally joined at some point. Therefore it is useful if the hydroformed automotive parts can be given a localized attachment flange. For a given flange shape, a parting plane for the dies is established relative to which the various surfaces of the flange shape, in cross section, have no significant reverse curvature. In this study, hydroforming process for flange forming was proposed. FE analysis to form flanged circular shape and flanged rectangular shape was preformed with Dynaform 5.5. To accomplish successful hydroforming process design, thorough investigation on proper combination of process parameters such as tool geometry and hydraulic pressure has been performed and optimized. The results show that flanged automotive parts can be successfully produced with tube hydroforming.

An Improved Finite Element Modeling Technique for Prestressed Concrete Girder Bridges (PSC보 교량의 유한요소 모델링방법에 관한 연구)

  • 김광수;박선규;김형열
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.5
    • /
    • pp.33-40
    • /
    • 1999
  • An improved finite element modeling technique is proposed for the assessment of load carrying capacity of partially prestressed concrete girder bridges. Based on the finite element method of analysis, shell and frame elements are used to model the slab and girders of the superstructure, respectively. In the modeling of superstructure, the emphasis is placed on the use of rigid link between the middle surface of slab an mid-plane of girder. This paper also includes the comparision of three different equations that are used in the calculation of effective moment of inertia for the partially prestressed concrete girders. Numerical analysis is performed for the unstrengthened and strengthened bridges. The obtained results are compared with those of load test for a prototype bridge. A good agreement is achieved between the numerical solutions by using the proposed method load test results.

Design and Control of a Wire-driven Haptic Device;HapticPen

  • Farahani, Hossein S.;Ryu, Je-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1662-1667
    • /
    • 2005
  • In this paper, analysis, design, control and prototype construction of a wearable wire-driven haptic interface called HapticPen is discussed. This device can be considered as a wire driven parallel mechanism which three wires are attached to a pen-tip. Wire tensions are provided utilizing three DC servo motors which are attached to a solid frame on the user's body. This device is designed as input as well as output device for a wearable PC. User can write letters or figures on a virtual plate in space. Pen-tip trajectory in space is calculated using motor encoders and force feedback resulting from contact between pen and virtual plate is provided for constraining the pen-tip motion onto the virtual plane that can be easily setup by arbitrary non-collinear three points in space. In this paper kinematic model, workspace analysis, application analysis, control and prototype construction of this device are presented. Preliminary experiments on handwriting in space show feasibility of the proposed device in wearable environments.

  • PDF

Application of Gradient Projection Algorithm for the Design of Steel Frames (강골조 설계를 위한 Gradient Projection 알고리즘의 응용)

  • 홍성목;이한선
    • Computational Structural Engineering
    • /
    • v.8 no.4
    • /
    • pp.99-106
    • /
    • 1995
  • The General conceptual constitution of structural optimization is formulated and the algorithm using the gradient projection method and design sensitivity analysis is discussed. Examples of minimum-weight design for six-story steel plane frame are taken to illustrate the applicability of this algorithm. The advantages of this algorithm such as marginal cost and design sensitivity analysis as well as system analysis are explained.

  • PDF