• Title/Summary/Keyword: Plane frame

Search Result 341, Processing Time 0.018 seconds

Numerical investigation of predicting the in-plane behavior of infilled frame with single diagonal strut models

  • Bouarroudj, Mohammed A.;Boudaoud, Zeineddine
    • Structural Engineering and Mechanics
    • /
    • v.81 no.2
    • /
    • pp.131-146
    • /
    • 2022
  • This study highlights the accuracy of several single strut models to predict the global response of infilled reinforced concrete (R/C) frames. To this aim, six experimental tests are selected to calibrate the numerical modeling. The width of the diagonal strut is calculated using several macro models from the literature. The mechanical properties of the diagonal strut are determined by using two methods: (a) by subtracting the bare frame response from that of the infilled frame, and (b) by calculating the axial strength in the diagonal direction. A combination between the different width and the axial force models is carried out to study the effects of each parameter on global response. Non-linear pushover analyses are conducted using SAP2000. The results indicate the accuracy of the macro-modeling approach to predict the behavior of the infilled frames.

Study on Optimum Design of Steel Plane Frame By Using Gradient Projection Method (Gradient Projection법을 이용한 철골평면구조물의 최적설계연구)

  • LEE HAN-SEON;HONG SUNG-MOK
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1994.04a
    • /
    • pp.38-45
    • /
    • 1994
  • The general conceptual constitution of structural optimization is formulated. The algorithm using the gradient projection method and design sensitivity analysis is discussed. Examples of minimum-weight design for six-story steel plane frame are taken to illustrate the application of this algorithm. The advantages of this algorithm such as marginal cost and design sensitivity analysis as well as system analysis are explained.

  • PDF

Application of Artificial Neural Networks to the prediction of out-of-plane response of infill walls subjected to shake table

  • Onat, Onur;Gul, Muhammet
    • Smart Structures and Systems
    • /
    • v.21 no.4
    • /
    • pp.521-535
    • /
    • 2018
  • The main purpose of this paper is to predict missing absolute out-of-plane displacements and failure limits of infill walls by artificial neural network (ANN) models. For this purpose, two shake table experiments are performed. These experiments are conducted on a 1:1 scale one-bay one-story reinforced concrete frame (RCF) with an infill wall. One of the experimental models is composed of unreinforced brick model (URB) enclosures with an RCF and other is composed of an infill wall with bed joint reinforcement (BJR) enclosures with an RCF. An artificial earthquake load is applied with four acceleration levels to the URB model and with five acceleration levels to the BJR model. After a certain acceleration level, the accelerometers are detached from the wall to prevent damage to them. The removal of these instruments results in missing data. The missing absolute maximum out-of-plane displacements are predicted with ANN models. Failure of the infill wall in the out-of-plane direction is also predicted at the 0.79 g acceleration level. An accuracy of 99% is obtained for the available data. In addition, a benchmark analysis with multiple regression is performed. This study validates that the ANN-based procedure estimates missing experimental data more accurately than multiple regression models.

A Study on a design for an interior space accompanied by an using pattern in behaving As a family types in housing space (주거공간 내 가족유형별 사용행태에 따른 실내공간계획에 관한 연구)

  • 이병영;최경란
    • Proceedings of the Korean Institute of Interior Design Conference
    • /
    • 2003.05a
    • /
    • pp.117-122
    • /
    • 2003
  • This study deals with apartments, the representative form of residence in Korea, and analyzes the residential plane of 30-pyong apartments that are constructed by the 5 construction companies within in the past three years. It is discovered that these apartments show a certain form and that developing the frame work of interior elements according to the characteristics of family types of 30-pyong apartment residents and the process for such a frame work are needed. Therefore, by analyzing the differences of residential forms according to resident types, this investigation tries to approach the design centering around users. To summarize the steps and contents of this study, first, it draws the understanding and the study field of common residential space, second, it shows the characteristics of family types within residential space, third, it analyzes and verifies the differences of characteristics according to family types within the representative size and form of plane. This investigation is aimed to provide the reasons for developing different planes according to family types despite they may be of the same size, to show the frame of the study method for developing the plane design and the interior element design for users and to suggest the way of designing residence in a conditional approach applying the conditions of users within common residential space.

  • PDF

A Study on the Improvement of Image Quality for a Thermal Imaging System with focal Plane Array Typed Sensor (초점면 배열 방식 열상 카메라 시스템의 화질 개선 연구)

  • 박세화
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.1 no.2
    • /
    • pp.27-31
    • /
    • 2000
  • Thermal imaging system is implemented for the measurement and the analysis of the thermal distribution of the target objects. The main Part of the system is thermal camera in which a focal plane array typed sensor is introduced The sensor detects mid-range infrared spectrum or target objects and then it output generic video signal which should be processed to form a thermal image frame. A digital signal processor(DSP) in the system inputs analog to digital converted data. performs algorithms to improve the thermal images and then outputs the corrected frame data to frame buffers for NTSC encoding and for digital outputs.. To enhance the quality of the thermal images, two point correction method is applied. Figures indicate that the corrected thermal images are much improved.

  • PDF

A study on improving efficiency in computational procedure of finite element nonlinear analysis of plane frame structures (평면 프레임 구조물의 유한요소 비선형 해석을 위한 효율적인 수치해석 방법에 관한 연구)

  • 구정서;이병채;곽병만
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.4
    • /
    • pp.631-641
    • /
    • 1988
  • Computational procedures associated with finite element nonlinear analysis of plane frame structures were examined and new solution schemes were suggested. Element stiffness matrix was derived from the principle of virtual displacements. Geometric and material nonlinearities were considered in the formulation. Solution method was based upon the constant displacement length method in conjunction with the Newton-Raphson method. New solution schemes were introduced in determining the initial load increment and the sign of load increments and predicting the length of displacement increment to improve user convenience, efficiency and stability. Numerical experiments were performed for several typical problems and suggested schemes were found efficient and convenient for analyzing nonlinear frame structures.

Probabilistic finite Element Analysis of Plane Frame (평면 FRAME구조물의 확률 유한 요소 해석)

  • 양영순;김지호
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1989.10a
    • /
    • pp.40-45
    • /
    • 1989
  • In order to take account of the statistical properties of random variables used in the structural analysis, the conventional approach usually adopts the safety factor based on past experiences for the qualitative assessment of structural safety problem. Recently, new approach based on the probabilistic concept has been applied to the assessment of structural safety in order to circumvent the difficulties of the conventional approach in choosing the appropriate safety factor. Thus, computer program called "Probabilistic finite element method" is developed by incorporation the probabilistic concept into the conventional matrix method in order to investigate the effects of the random variables on the final output of the structural analysis. From the comparison of some examples, it can be concluded that the PFEM developed in this study deals with consistently with the uncertainty of random variables and provides the rational tool for the assessment of structural safety of plane frame.

  • PDF

Ship Frame Ring Analysis by a Matrix Method (매트릭스법(法)에 의한 선체근골환(船體筋骨環) 해석(解析))

  • S.J.,Yim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.10 no.1
    • /
    • pp.21-26
    • /
    • 1973
  • A simple matrix method to analyze the ship's transverse frame ring is proposed. In this approach, the frame ring is treated as a plane frame of uniform slender members. The loadings on the frame consist of buoyancy loads, deck loads and cargo loads. The hatch coaming are considered to deflect under the loads. Because of symmetry, only the half of the frame is analyzed. The method is to obtain the forces and moments on each member. The deformation of the frame can be determined from the nodal displacements. For a sample calculation, a frame ring of a 10,000 ton class cargo liner is analyzed on the IBM 1130 computer. The numerical results obtained are proved to be resonable.

  • PDF

Finite element model updating of in-filled RC frames with low strength concrete using ambient vibration test

  • Arslan, Mehmet Emin;Durmus, Ahmet
    • Earthquakes and Structures
    • /
    • v.5 no.1
    • /
    • pp.111-127
    • /
    • 2013
  • This paper describes effects of infill walls on behavior of RC frame with low strength, including numerical modeling, modal testing and finite-element model updating. For this purpose full scaled, one bay and one story RC frame is produced and tested for plane and brick in-filled conditions. Ambient-vibration testis applied to identify dynamic characteristics under natural excitations. Enhanced Frequency Domain Decomposition and Stochastic Subspace Identification methods are used to obtain experimental dynamic characteristics. A numerical modal analysis is performed on the developed two-dimensional finite element model of the frames using SAP2000 software to provide numerical frequencies and mode shapes. Dynamic characteristics obtained by numerical and experimental are compared with each other and finite element model of the frames are updated by changing some uncertain modeling parameters such as material properties and boundary conditions to reduce the differences between the results. At the end of the study, maximum differences in the natural frequencies are reduced on average from 34% to 9% and a good agreement is found between numerical and experimental dynamic characteristics after finite-element model updating. In addition, it is seen material properties are more effective parameters in the finite element model updating of plane frame. However, for brick in-filled frame changes in boundary conditions determine the model updating process.

A Study on Measurement and Analysis of In-Plane Deformations by Using Laser Speckle Interferometry (I) (레이저 스페클 간섭법을 이용한 면내 변형 측정 및 해석에 대한 연구 (I))

  • 강영준;노경완;강형수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.11
    • /
    • pp.121-129
    • /
    • 1998
  • In-plane ESPI(Electronic Speckle Pattern Interferometry) was devised to measure in-plane deformations and rotation of a specimen with laser in this study. ESPI is a optical measuring method to be able to measure the deformations of engineering components and materials in industrial fields. The conventional measuring methods of surface deformations such as the strain gauge have many demerits because they are contact and point-to-point measuring ones. But that ESPI is noncontact, nondestructive and whole field measuring method can overcome previous disadvantages. We used ESPI which is sensitive to in-plane displacement for measuring in-plane deformations of a disk. And the 4-frame phase shifting method was used for the quantitative analysis. First of all, the system calibration was done due to an in-plane rotation before getting deformations of a disk. Finally we showed good agreement between the experiment results and those of the FEA(Finite Element Analysis).

  • PDF