• Title/Summary/Keyword: Plane Wave

Search Result 886, Processing Time 0.03 seconds

Magnetism and Half-metallicity of Co2TiSn(001) Surfaces: A First-principles Study (Co2TiSn(001) 표면의 자성 및 반쪽금속성에 대한 제일원리연구)

  • Jin, Y.J.;Lee, J.I.
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.4
    • /
    • pp.131-135
    • /
    • 2008
  • The electronic structures, magnetism, and half-metallicity of the full-Heusler $Co_2TiSn$(001) surfaces have been investigated by using the all-electron full-potential linearized augmented plane wave method within the generalized gradient approximation. We have considered both of the Co atoms terminated(Co-term) and the TiSn atoms terminated(TiSn-term) surfaces. From the calculated density of states, we found that the half-metallicity was destroyed at the surface of the Co-term, while the half-metallicity was retained at the TiSn-term. For the surface of the Co-term, due to the reduced coordination number the occupied minority d-states were shifted to high energy regions and that cross the Fermi level, thus destroy the surface half-metallicity. On the other hand the surface states at the surface of the TiSn-term were located just below the Fermi level, which reduces the minority spin-gap with respect to that of the center layer. The calculated magnetic moment of the surface Co atom for the Co-term was increased by 10 % to 1.16 ${\mu}_B$ with respect to that of the inner-layers, while the magnetic moment of the subsurface Co atom in the TiSn-term has almost same value of the innerlayers(1.03 ${\mu}_B$).

Oxidation behavior on the surface of titanium metal specimens at high temperatures (300~1000℃) (고온 (300~1000 ℃)에서 티타늄 금속시편의 표면 산화거동)

  • Park, Yang-Soon;Han, Sun-Ho;Song, Kyuseok
    • Analytical Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.464-470
    • /
    • 2009
  • For the investigation of the oxidation behavior for titanium metal at various temperatures, titanium specimens were heated for 2 hours in the range of $300{\sim}1000^{\circ}C$, individually. And then X-ray diffraction(XRD), scanning electron microscopy (SEM)/energy dispersive spectroscopy (EDS) and attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopic analyses were carried out. At $300^{\circ}C$, infrared absorption bands on the surface of the titanium specimen were shown in a spectrum by the oxygen uptake of titanium metal(hexagonal). At increased temperature, not only infrared absorption bands but also X-ray diffraction peaks for the titanium oxide were grown and shifted to low wave number ($cm^{-1}$) and angle($^{\circ}$) due to the more oxygen diffusion into titanium metal. At $700^{\circ}C$, $Ti_3O$ (hexagonal phase) was identified by X-ray diffractometer. $TiO_2$ (rutile, tetragonal phase) layer was produced on the surface of the specimen below $1{\mu}m$ in thickness at $600^{\circ}C$, and grown about $2{\mu}m$ at $700^{\circ}C$ and with $110{\mu}m$ in thickness at $1000^{\circ}C$. Above $900^{\circ}C$, (110) plane of the crystal on the surface of rutile-$TiO_2$ layer was grown.

HRTF Interpolation Using a Spherical Head Model (원형 머리 모델을 이용한 머리 전달 함수의 보간)

  • Lee, Ki-Seung;Lee, Seok-Pil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.7
    • /
    • pp.333-341
    • /
    • 2008
  • In this paper, a new interpolation model for the head related transfer function (HRTF) was proposed. In the method herein, we assume that the impulse response of the HRTF for each azimuth angle is given by linear interpolation of the time-delayed neighboring impulse responses of HRTFs. The time delay of the HRTF for each azimuth angle is given by sum of the sound wave propagation time from the ears to the sound source, which can be estimated by using azimuth angle, the physical shape of the underlying head and the distance between the head and sound source, and the refinement time yielding the minimum mean square error. Moreover, in the proposed model, the interpolation intervals were not fixed but varied, which were determined by minimizing the total number of HRTFs while the synthesized signals have no perceptual difference from the original signals in terms of sound location. To validate the usefulness of the proposed interpolation model, the proposed model was applied to the several HRTFs that were obtained from one dummy-head and three human heads. We used the HRTFs that have 5 degree azimuth angle resolution at 0 degree elevation (horizontal plane). The experimental results showed that using only $30\sim40%$ of the original HRTFs were sufficient for producing the signals that have no audible differences from the original ones in terms of sound location.

Analysis on the source characteristics of three earthquakes nearby the Gyeongju area of the South Korea in 1999 (1999년 경주 인근에서 3차례 발생한 지진들의 지진원 특성 분석)

  • Choi, Ho-Seon;Shim, Taek-Mo
    • The Journal of Engineering Geology
    • /
    • v.19 no.4
    • /
    • pp.509-515
    • /
    • 2009
  • Three earthquakes with local magnitude ($M_L$) greater than 3.0 occurred on April 24, June 2 and September 12 in 1999 nearby the Gyeongju area. Redetermined epicenters were located within the radius of 1 km. We carried out waveform inversion analysis to estimate focal mechanism of June 2 event, and P and S wave polarity and their amplitude ratio analysis to estimate focal mechanisms of April 24 and September 12 events. June 2 and September 12 events had similar fault plane solutions each other. The fault plane solution of April 24 event included those of other 2 events, but its distribution range was relatively broad. Focal mechanisms of those events had a strike slip faulting with a small normal component. P-axes of those events were ENE-WSW which were similar to previous studies on the P-axis of the Korean Peninsula. Considering distances between epicenters, similarities of seismic waves and sameness of polarities of seismic data recorded at common seismic stations, these events might occurred at the same fault. The seismic moment of June 2 event was estimated to be $3.9\;{\times}\;10^{14}\;N{\cdot}m$ and this value corresponded to the moment magnitude ($M_W$) 3.7. The moment magnitude estimated by spectral analysis was 3.8, which was similar to that estimated by waveform inversion analysis. The average stress drop was estimated to be 7.5 MPa. Moment magnitudes of April 24 and September 12 events were estimated to be 3.2 and 3.4 by comparing the spectrum of those events recorded at common single seismic station.

Pergola's Shading Effects on the Thermal Comfort Index in the Summer Middays (여름철 낮 그늘시렁의 차양이 온열쾌적 지표에 미치는 영향)

  • Ryu, Nam-Hyong;Lee, Chun-Seok
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.41 no.6
    • /
    • pp.52-61
    • /
    • 2013
  • This study was conducted to investigate the effects of pergola's shading on the thermal comfort index in the summer. The 3 type of pergolas($4m{\times}4m{\times}h2.7m$) which were screened overhead(I)/overhead west(II)/overhead west north(III) plane with reed blind for summer shading and winter wind break, were constructed on the 4th floor rooftop. Thereafter the meteorological variables(air temperature, humidity, radiation, and wind speed) of pergola I, III and rooftop were measured from 14 to 16 August 2013(1st experiment), those of pergola I, II and rooftop were measured from 26 to 28 August 2013(2nd experiment). The effects of pergola's shading on the radiation environment and mean radiant temperature($T_{mrt}$), standard effective temperature($SET^*$) were as follows. The maximum 1 h mean values of differences ${\Delta}$ of the sums of shortwave radiant flux densities absorbed by the human body (${\Delta}K_{abs,max}$) between pergola I, III and nearby sunny rooftop were $-119W/m^2$, $-158W/m^2$, those between pergola I, II and rooftop were $-145W/m^2$, $-159W/m^2$. The maximum 1 h mean values of differences ${\Delta}$ of the sums of long wave radiant flux densities absorbed by the human body (${\Delta}L_{abs,max}$) between pergola I, III and nearby sunny rooftop, were $-15W/m^2$, $-17W/m^2$, those between pergola I, II and nearby rooftop, were $-8W/m^2$, $-7W/m^2$. The response of the direction dependent long wave radiant flux densities $L_1$ on the pergola's shading turned out to be distinctly weaker as compared to shortwave radiant flux densities $K_1$. The pergola's shading leads to a lowering of $T_{mrt}$ and $SET^*$. The peak values of $T_{mrt}$ absorbed by the human body were decreased $16^{\circ}C$ and $21.4^{\circ}C$ under pergola I and III as compared to that of nearby rooftop in the 1st experiment. Those were decreased $18.8^{\circ}C$ and $20.8^{\circ}C$ under pergola I and II as compared to that of nearby rooftop in the 2nd experiment. The peak values of $SET^*$ absorbed by the human body were decreased $2.9^{\circ}C$ and $2.6^{\circ}C$ under pergola I and III as compared to that of nearby rooftop in the 1st experiment. Those were decreased $3.5^{\circ}C$ and $2.6^{\circ}C$ under pergola I and II as compared to that of nearby rooftop in the 2nd experiment. The relative $SET^*$ decrease in pergola II, III compared to nearby sunny rooftop $SET^*$ were lower than that in pergola I, revealing the influence of the wind speed. Therefore it is essential to design pergola to maximize wind speed and minimize solar radiation to achieve comfort in the hot summer. The $SET^*$ under pergola I, III were exceeded $28.7^{\circ}C$ and $30.4^{\circ}C$ which were the upper limit of thermal comfort and tolerable zone during all most daytimes in the 1st experiment(maximum air temperature $37.5^{\circ}C$). The $SET^*$ under pergola I was exceeded $28.7^{\circ}C$ which was the upper limit of thermal comfort zone at 13h, that under pergola II was exceeded $28.7^{\circ}C$ from 8h to 14h, meanwhile the $SET^*$ under pergola I, II were within thermal tolerable zone during most daytimes in the 2nd experiment(maximum air temperature $34.4^{\circ}C$). Therefore to ensure the thermal comfort of pergola for summer hottest days, pergola should be shaded with not only reed blind but also climbing and shade plants. $T_{mrt}$ and $SET^*$ were suitable index for the evaluation of pergola's shading effects and outdoors.

A Study on Soviet Constructive Fashion in 1920s (1920년대 소비에트 구성주의 패션에 관한 연구)

  • 조윤경;금기숙
    • Journal of the Korean Society of Costume
    • /
    • v.36
    • /
    • pp.183-203
    • /
    • 1998
  • The wave of Avant-garde swept away all in the unique social background so called 'October Revolution' and the early 1900 Russian society which was able to absorb and accept anything. The Russian avant-garde has been affected by the Cubism and the Futurism those had peculiarly appeared in the early twentieth century, spreaded out to three spheres: the Suprematism, the Rayonism and the Constructivism. The Russian Constructivism has appeared in this background, concretely and ideally ex-pressed the ideology of the revolution into the artistic form and made an huge influence to the whole Russian society. The Constructivist like Tatlin, naum Gabo, Pevaner, Rodchenko, Stepanova, Popova and Exter gave great effect on the Soviet Constructive fashion design in 1920's after the Revolution. The Soviet costume in 1920s hold in common the characteristicss of the Constructive graphic as it is, geometrical and abstractive form, energetic and motility. In fashion design, these graphic qualities have been showed as the application of geometrical form and architectural image, physical distortion and transformation. And in textile design, the simple, dynamical presentation has been appeared. We can classify the Soviet costume at this time into three occasions. The first term is from late 1910 th mid 1920, and it is altered from folk costume design to modern one. With Lamanova as the first on the list, using the folk mitif, the Constructive expression of simple form has been gradually revealed in design. Designers like Makarova, Pribylskaia and Mukhina produced the plane, simple chemise style with the decoration of the Russian traditional motif. From early to late 1920 is the second term, and it is at the pick of the most active processing of the Constructive design. Not only at the costume in daily life but also at the theatrical costume and textile, the con-structive design has been represented all avail-able fields. Many Constructivists including Stepanova, Popova, Exter and Rodchenko took part in the textile design and costume design so as to evlvo their aesthetic concept. The third term is from late 1920 to early 1930. The socialistic realism has dominated over the whole culture and art, the revolutionary dynamic motif has been presented also in textile design. The formative features of Soviet Constructive fashion design are; silhouette, from, motif, color and fabric. The first, the silhouette : a straight rectangular silhouetted has been expressed through the whole period and a volumed one with distorted human body shape has introduced in the theatrical costume design. The second, the form: many lengthened rectangular forms have been made at beginnings, but to the middle period, geometrical, architectural forms have been more showed and there are energy and movement in design. At the last period, only a partial feature-division has been seen. The third, the motif; no pattern or ethnic motif has been partly used at beginnings, a figure like circle, tri-angle has gradually appeared in textile design. At latter period, a real-existent motif like an airplane has been represented with graphing and simplicity. The fourth, the color ; because of insufficient dyeing, neutral color like black or grey color has been mainly covered, but after middle term, a primary color or pastel tone has been seen, contrast of the fabric; without much development of textile industry after the Revolution, thick and durable fabrics have been the main stream, but as time had going to the last period, fabrics such as linen, cotton, velvet and silk have been varously choesn. At the theatrical costume, new materials like plastics and metals that were able to accentuate the form. The pursuit of popularity, simplicity and functionalism that the basic concept of Constructive fashion is one of the "beauty" which has been searching in modern fashion. And now we can appreciate how innovative and epochal this Soviet Constructive fashion movement was.ement was.

  • PDF