• 제목/요약/키워드: Plane Stress Analysis

검색결과 721건 처리시간 0.023초

이종재 접합부에서의 응력집중현상에 관한 연구 (A Study on the Stress Concentration Phenomenon of a Dissimilar Joints)

  • 조상명;김영식
    • Journal of Welding and Joining
    • /
    • 제10권1호
    • /
    • pp.35-42
    • /
    • 1992
  • In this study, the stress concentration phenomenon for the dissimilar joints(ceramic-metal) bonded by thermal treating using a soft-insert metal(copper) was investigated with the aid of FEM(finite element method) under the load condition of uniform tension. The analysis was carried out by the supposing that stress states are plane stress or plane strain and elastic or elastic-plastic. And the Von Mises yield criterion and the incremental theory as plastic flow were adopted in this analysis. As the summarized results obtained, the stress concentration phenomenon was severer as the soft insert metal was thicker, in plane strain than in plane stress and in elastic-plastic state than in elastic state. Furthermore, the inducing mechanism of stress concentration was well expressed by the constraint forces(Fc) generated between the soft and the hard material.

  • PDF

Stress concentrations around a circular hole in an infinite plate of arbitrary thickness

  • Dai, Longchao;Wang, Xinwei;Liu, Feng
    • Structural Engineering and Mechanics
    • /
    • 제34권2호
    • /
    • pp.143-157
    • /
    • 2010
  • This paper presents theoretical solutions for the three-dimensional (3D) stress field in an infinite isotropic elastic plate containing a through-the-thickness circular hole subjected to far-field in-plane loads by using Kane and Mindlin's assumption. The dangerous position, where the premature fracture or failure of the plate will take place, the expressions of the tangential stress at the surface of the hole and the out-of-plane stress constraint factor are found in a concise, explicit form. Based on the present theoretical solutions, a comprehensive analysis is performed on the deviated degree of the in-plane stresses from the related plane stress solutions, stress concentration and out-of-plane constraint, and the emphasis has been placed on the effects of the plate thickness, Poisson's ratio and the far-field in-plane loads on the stress field. The analytical solution shows that the effects of the plate thickness and Poisson's ratio on the deviation of the 3D in-plane stress components is obvious and could not be ignored, although their effects on distributions of the in-plane stress components are slight, and that the effect of the far-field in-plane loads is just on the contrary of that of the above two. When only the shear stress is loaded at far field, the stress concentration factor reach its peak value about 8.9% higher than that of the plane stress solutions, and the out-of-plane stress constraint factor can reach 1 at the surface of the hole and is the biggest among all cases considered.

Plastic behavior of circular discs with temperature-dependent properties containing an elastic inclusion

  • Zarandi, Somayeh Bagherinejad;Wang, Yun-Che;Novozhilova, Olga V.
    • Structural Engineering and Mechanics
    • /
    • 제58권4호
    • /
    • pp.731-743
    • /
    • 2016
  • Plastic behaviors, based on the von Mises yield criterion, of circular discs containing a purely elastic, circular inclusion under uniform temperature loading are studied with the finite element analysis. Temperature-dependent mechanical properties are considered for the matrix material only. In addition to analyzing the plane stress and plane strain disc, a 3D thin disc and cylinder are also analyzed to compare the plane problems. We determined the elastic irreversible temperature and global plastic collapse temperature by the finite element calculations for the plane and 3D problem. In addition to the global plastic collapse, for the elastically hard case, the plane stress problem and 3D thin disc may exhibit a local plastic collapse, i.e. significant pile up along the thickness direction, near the inclusion-matrix interface. The pileup cannot be correctly modeled by the plane stress analysis. Furthermore, due to numerical difficulties originated from large deformation, only the lower bound of global plastic collapse temperature of the plane stress problem can be identified. Without considerations of temperature-dependent mechanical properties, the von Mises stress in the matrix would be largely overestimated.

필릿 용접부의 면외굽힘하중에 대한 피로강도 (Fatigue Strength of Fillet Weldment under Out-of-plane Bending Load)

  • 강성원;한상혁;김화수;백영민
    • 대한조선학회논문집
    • /
    • 제40권1호
    • /
    • pp.28-35
    • /
    • 2003
  • Fatigue tests of transverse fillet weldment were performed under out-of-plane bending loads. Significant increase of the fatigue strength was observed under out-of-plane bending loads, compared to the one under in-plane loads (axial loads). Applicability of the crack propagation analysis using LEFM for the surface crack of fillet weldment were investigated as well, in parallel with the fatigue tests. For the rational assessment of the fatigue strength of welded ship structures where combined stresses of the in-plane axial stress and the out-of-plane bending stress are induced simultaneously due to complexity of applied load and structural geometry, further investigation is recommended for the effect of the out-of-plane bending stress on the fatigue strength of weldment.

면내력을 받는 변단면 후판의 진동해석 (Vibration Analysis of Tapered Thick Plate Subjected to Static In-plane Stress)

  • 정진택;오숙경;이용수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.521-525
    • /
    • 2004
  • This paper has the object of investigating natural frequencies of tapered thick plate on pasternak foundation by means of finite element method and providing kinetic design data for mat of building structures. vibration analysis that tapered thick plate subjected to In-plane stress is presented in this paper Finite element analysis of rectangular plate is done by use of rectangular finite element with 8-nodes. In order to analysis tapered plate which is supported on pasternak foundation. The ratio of In-plane stress to critical load is varied with $0.2\sigma_{cr},\;0.4\sigma_{cr},\;0.6\sigma_{cr}$, and the Winkler parameter is 0, 10, 100, 1000 the shear foundation parameter 0, 10. The taper ratio is applied as 0.0, 0.2, 0.4, 0.6, 0.8 respectively. This paper is analyzed varying thickness by taper ratio with In-plane stress.

  • PDF

압축잔류응력장을 전파하는 피로균열의 개구거동의 유한요소법을 이용한 해석적 검토 (An Analysis of the Fatigue Crack Opening Behaviour in the Welding Residual Stress Field by the Finite Element Method)

  • 박응준;김응준;유승현
    • Journal of Welding and Joining
    • /
    • 제21권6호
    • /
    • pp.77-83
    • /
    • 2003
  • The finite element analysis was performed for the cracks existing in residual stress fields in order to investigate the effects of configuration of residual stress distribution to the fatigue crack opening behaviour. And the variation of stress distributions adjacent to the crack caused by uploading was examined. The finite element model with contact elements for the crack plane and plane stress elements for the base material and the analytical method based on the superposition principle to estimate crack opening behaviour and the stress distribution adjacent to the crack subjected to uploading were used. The results of the analysis showed that crack opening behaviors and variations of stress distribution caused by uploading were changed depending on the configuration of residual stress distribution. When the crack existed in the region of compressive residual stress and the configuration of compressive residual stress distribution were inclined, a partial crack opening just behind of a crack tip occurred during uploading. Based on the above results, it was clarified that the crack opening behaviour in the residual stress field could be predicted accurately by the finite element analysis using these analytical method and model.

A 2D hybrid stress element for improved prediction of the out-of-plane fields using Fourier expansion

  • Feng, M.L.;Dhanasekar, M.;Xiao, Q.Z.
    • Structural Engineering and Mechanics
    • /
    • 제13권5호
    • /
    • pp.491-504
    • /
    • 2002
  • Recently we formulated a 2D hybrid stress element from the 3D Hellinger-Reissner principle for the analysis of thick bodies that are symmetric to the thickness direction. Polynomials have typically been used for all the displacement and stress fields. Although the element predicted the dominant stress and all displacement fields accurately, its prediction of the out-of-plane shear stresses was affected by the very high order terms used in the polynomials. This paper describes an improved formulation of the 2D element using Fourier series expansion for the out-of-plane displacement and stress fields. Numerical results illustrate that its predictions have markedly improved.

Theoretical analysis of tensile stresses and displacement in orthotropic circular column under diametrical compression

  • Tsutsumi, Takashi;Iwashita, Hiroshi;Miyahara, Kagenobu
    • Structural Engineering and Mechanics
    • /
    • 제38권3호
    • /
    • pp.333-347
    • /
    • 2011
  • This paper shows the solution for an orthotropic disk under the plane strain condition obtained with complex stress functions. These stress functions were induced by Lekhnitskii and expanded by one of the authors. Regarding diametrical compression test, the finite element method poses difficulties in representing the concentrated force because the specimens must be divided into finite elements during calculation. On the other hand, the method shown in this study can exactly represent this force. Some numerical results are shown and compared with those obtained under the plane stress condition for both stress and displacement. This comparison shows that the differences between the tensile stresses occurred under the plane strain condition and also that the differences under a plane stress condition increase as the orthotropy ratio increases for some cases.

평판용접에 관한 평면변형 열탄소성 해석 (The Plane-Deformation Thermal Elasto-Plastic Analysis During Welding of Plate)

  • 방한서;한길영
    • 한국해양공학회지
    • /
    • 제8권1호
    • /
    • pp.33-40
    • /
    • 1994
  • Welding of structure produces welding residual stresses which influence buckling strength, brittle fracture strength and cold crack on the weld parts. Therefore, it is very important to accurately analyze the residual stress before welding in order to guarantee the safety of weldment. If the weld length is long enough compared to the thickness and the breadth of plate, thermal and mechanical behaviors in the middle portion of the plate are assumed to be uniform along the thickness direction(z-axis). Thus, the following conditions(so-called plane deformation) can be assumed for the plate except near its end;1) distributions of stress and strain are independent on the z-axis;2) plane normal to z-axis before deformation remains plane during and after deformation. In this paper, plane-deformation thermal elasto-plastic problem is formulated by being based on the finite element method. Moreover special regards and paid to the fact that material properties in elastic and plastic region are temperature-dependence. And the method to solve the plane-deformation thermal elasto-plastic problem is shown by using the incremental technique. From the results of analysis, the characterisics of distribution of welding residual stress and plastic strain with the production mechanism are clarified.

  • PDF

압축하중시 RPI clasp의 3가지 다른 proximal plate 형태에 따른 지대치 주위조직의 광탄성 응력 분석 (Photoelastic Stress Analysis of the Abutment Surrounding Tissue According to Shape of the Proximal Plate of the RPI Clasp)

  • 최정수;김부섭
    • 대한치과기공학회지
    • /
    • 제34권4호
    • /
    • pp.473-482
    • /
    • 2012
  • Purpose: The purpose of this study was to investigate the stress distribution of the surrounding tissues according to 3 proximal plate types of the RPI clasp. Methods: The removeable partial denture which mandibular right and left second premolars and mandibular molars were lost was attached to a three dimensional photo elastic epoxy resin model. Then 120N of vertical load was applied. After 3-dimensional photoelastic stress analysis was used to record the isochromatic fringe patterns. Results: Kratochvil type guiding plane exhibited little uniform stress distribution on load center and alveolar ridge, but higher stress concentration on buccal surface of second premolar. Krol type guiding plane exhibited the stress concentration on the front of load center and relatively higher stress concentration on buccal surface of first premolar. However, this type had no effect on canine. Researcher type guiding plane showed the stress concentration on second premolar and molar, but the little stress distribution on first premolar. Conclusion: In all types, excessive stress concentration was appeared and three types were not significant different.