• Title/Summary/Keyword: Plane Detection

Search Result 310, Processing Time 0.024 seconds

Simulation of Resonance Shift and Quality Factor for Opto-fluidic Ring Resonator (OFRR) Biosensors (광-유체링공진기(OFRR) 바이오센서에 관한 공진이동과 양호도의 시뮬레이션)

  • Cho, Han-Keun;Han, Jin-Woo;Yang, Gil-Mo
    • Journal of Biosystems Engineering
    • /
    • v.36 no.1
    • /
    • pp.23-32
    • /
    • 2011
  • In this work, the finite element method was used to investigate the shifts of resonance frequencies and quality factor of whispering-gallery-mode (WGM) for an opto-fluidic ring resonator (OFRR) biosensor. To describe the near-field radiation transfer, the time-domain Maxwell's equations were employed and solved by using the in-plane TE wave application mode of the COMSOL Multiphysics with RF module. The OFRR biosensor model under current study includes a glass capillary with a diameter of 100 mm and wall thickness of 3.0 mm. The resonance energy spectrum curves in the wavelength range from 1545 nm to 1560 nm were examined under different biosensing conditions. We mainly studied the sensitivity of resonance shifts affected by changes in the effective thickness of the sensor resonator ring with a 3.0 mm thick wall, as well as changes in the refractive index (RI) of the medium inside ring resonators with both 2.5 mm and 3.0 mm thick walls. In the bulk RI detection, a sensitivity of 23.1 nm/refractive index units (RIU) is achieved for a 2.5 mm thick ring. In small molecule detection, a sensitivity of 26.4 pm/nm is achieved with a maximum Q-factor of $6.3{\times}10^3$. These results compare favorably with those obtained by other researchers.

Mobile Mapping System Development Based on MEMS-INS for Measurement of Road Facility (도로시설물 계측을 위한 MEMS-INS 기반 모바일매핑시스템(MMS) 개발)

  • Lee, Kye Dong;Jung, Sung Heuk;Lee, Ki Hyung;Choi, Yun Soo;Kim, Man Sik
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.2
    • /
    • pp.75-84
    • /
    • 2018
  • The purpose of this study is that the low-cost mobile mapping system using INS (Inertial Navigation System) based on MEMS (Micro Electro Mechanical System) could decipher the interpretation of road facility with the accuracy of x, y 0.546m plane error. Even though the MMS (Mobile Mapping System) technology as a new measurement technology has been used vividly to set up geographic information by some world leading surveying equipment manufacturers, the domestic technology is still in its beginning stage. Several domestic institutes and companies tried to catch up the leading technology but they just produced prototypes which needs more stabilization. Through this thesis, we developed low-cost mobile mapping system installed with INS based on MEMS after time synchronizing sensors for MMS such as LiDAR (Light Detection And Ranging), CCD (Charge Coupled Device), GPS/INS (Global Positioning System / Inertial Navigation System) and DMI (Distance Measurement Instrument).

Tip-over Terrain Detection Method based on the Support Inscribed Circle of a Mobile Robot (지지내접원을 이용한 이동 로봇의 전복 지형 검출 기법)

  • Lee, Sungmin;Park, Jungkil;Park, Jaebyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.10
    • /
    • pp.1057-1062
    • /
    • 2014
  • This paper proposes a tip-over detection method for a mobile robot using a support inscribed circle defined as an inscribed circle of a support polygon. A support polygon defined by the contact points between the robot and the terrain is often used to analyze the tip-over. For a robot moving on uneven terrain, if the intersection between the extended line of gravity from the robot's COG and the terrain is inside the support polygon, tip-over will not occur. On the contrary, if the intersection is outside, tip-over will occur. The terrain is detected by using an RGB-D sensor. The terrain is locally modeled as a plane, and thus the normal vector can be obtained at each point on the terrain. The support polygon and the terrain's normal vector are used to detect tip-over. However, tip-over cannot be detected in advance since the support polygon is determined depending on the orientation of the robot. Thus, the support polygon is approximated as its inscribed circle to detect the tip-over regardless of the robot's orientation. To verify the effectiveness of the proposed method, the experiments are carried out using a 4-wheeled robot, ERP-42, with the Xtion RGB-D sensor.

Gaze Detection System by IR-LED based Camera (적외선 조명 카메라를 이용한 시선 위치 추적 시스템)

  • 박강령
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.4C
    • /
    • pp.494-504
    • /
    • 2004
  • The researches about gaze detection have been much developed with many applications. Most previous researches only rely on image processing algorithm, so they take much processing time and have many constraints. In our work, we implement it with a computer vision system setting a IR-LED based single camera. To detect the gaze position, we locate facial features, which is effectively performed with IR-LED based camera and SVM(Support Vector Machine). When a user gazes at a position of monitor, we can compute the 3D positions of those features based on 3D rotation and translation estimation and affine transform. Finally, the gaze position by the facial movements is computed from the normal vector of the plane determined by those computed 3D positions of features. In addition, we use a trained neural network to detect the gaze position by eye's movement. As experimental results, we can obtain the facial and eye gaze position on a monitor and the gaze position accuracy between the computed positions and the real ones is about 4.2 cm of RMS error.

Simulation for Small Lamellar Grating FTIR Spectrometer for Passive Remote Sensing

  • Chung, You Kyoung;Jo, Choong-Man;Kim, Seong Kyu;Kim, In Cheol;Park, Do-Hyun;Bae, Hyo-Yook;Kang, Young Il
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.6
    • /
    • pp.669-677
    • /
    • 2016
  • A miniaturized FTIR spectrometer based on lamellar grating interferometry is being developed for passive remote-sensing. Consisting of a pair of micro-mirror arrays, the lamellar grating can be fabricated using MEMS technology. This paper describes a method to compute the optical field in the interferometer to optimize the design parameters of the lamellar grating FTIR spectrometer. The lower limit of the micro-mirror width in the grating is related to the formation of a Talbot image in the near field and is estimated to be about $100{\mu}m$ for the spectrometer to be used for the wavelength range of $7-14{\mu}m$. In calculating the far field at the detection window, the conventional Fraunhofer equation is inadequate for detection distance of our application, misleading the upper limit of the micro-mirror width to avoid interference from higher order diffractions. Instead, the far field is described by the unperturbed plane-wave combined with the boundary diffraction wave. As a result, the interference from the higher order diffractions turns out to be negligible as the micro-mirror width increases. Therefore, the upper limit of the micro-mirror width does not need to be set. Under this scheme, the interferometer patterns and their FT spectra are successfully generated.

A Robust Algorithm for Moving Object Segmentation and VOP Extraction in Video Sequences (비디오 시퀸스에서 움직임 객체 분할과 VOP 추출을 위한 강력한 알고리즘)

  • Kim, Jun-Ki;Lee, Ho-Suk
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.8 no.4
    • /
    • pp.430-441
    • /
    • 2002
  • Video object segmentation is an important component for object-based video coding scheme such as MPEG-4. In this paper, a robust algorithm for segmentation of moving objects in video sequences and VOP(Video Object Planes) extraction is presented. The points of this paper are detection, of an accurate object boundary by associating moving object edge with spatial object edge and generation of VOP. The algorithm begins with the difference between two successive frames. And after extracting difference image, the accurate moving object edge is produced by using the Canny algorithm and morphological operation. To enhance extracting performance, we app]y the morphological operation to extract more accurate VOP. To be specific, we apply morphological erosion operation to detect only accurate object edges. And moving object edges between two images are generated by adjusting the size of the edges. This paper presents a robust algorithm implementation for fast moving object detection by extracting accurate object boundaries in video sequences.

3D First Person Shooting Game by Using Eye Gaze Tracking (눈동자 시선 추적에 의한 3차원 1인칭 슈팅 게임)

  • Lee, Eui-Chul;Park, Kang-Ryoung
    • The KIPS Transactions:PartB
    • /
    • v.12B no.4 s.100
    • /
    • pp.465-472
    • /
    • 2005
  • In this paper, we propose the method of manipulating the gaze direction of 3D FPS game's character by using eye gaze detection from the successive images captured by USB camera, which is attached beneath HMB. The proposed method is composed of 3 parts. At first, we detect user's pupil center by real-time image processing algorithm from the successive input images. In the second part of calibration, when the user gaze on the monitor plane, the geometric relationship between the gazing position of monitor and the detected position of pupil center is determined. In the last part, the final gaze position on the HMD monitor is tracked and the 3D view in game is controlled by the gaze position based on the calibration information. Experimental results show that our method can be used for the handicapped game player who cannot use his(or her) hand. Also, it can Increase the interest and the immersion by synchronizing the gaze direction of game player and the view direction of game character.

Nacl Aqueous Solution Concentration Detection Using Slot-Coupled Capacitor Resonator (슬롯결합 커패시터 공진기를 이용한 Nacl 수용액 농도 검출)

  • Yun, Gi-Ho
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.11
    • /
    • pp.29-35
    • /
    • 2018
  • In this paper, we proposed a high sensitivity sensor that can detect the concentration change of Nacl aqueous solutions by using a slot coupling capacitor resonator in sub-microwave band. The resonator applied to the sensor consists of a parallel plate capacitor connected to an inductive slot utilizing the ground plane of the microstrip line. Based on the measurement data of the dielectric characteristics according to the concentration change, the resonance frequency was determined in the UHF band where the concentration change is evident and the Nacl aqueous solution is inserted into the capacitor. Based on the simulation, the proposed resonator was designed and fabricated. The concentration level was varied from 0 to 400 mg/dl as 100 mg/dl step, and the transmission scattering coefficient ($S_{21}$) was successfully measured. Experimental results show that it is applicable to the concentration detection sensor in Nacl aqueous solution by obtaining minimum 1.8 dB($S_{21}$) at each step.

Design and Development of a Single-photon Laser and Infrared Common Aperture Optical System

  • Wu, Hongbo;Zhang, Xin;Tan, Shuanglong;Liu, Mingxin;Wang, Lingjie;Yan, Lei;Liu, Yang;Shi, Guangwei
    • Current Optics and Photonics
    • /
    • v.6 no.2
    • /
    • pp.171-182
    • /
    • 2022
  • A single-photon laser and mid-wave infrared (MWIR) common aperture optical system was designed and developed to detect and range a long-distance civil aviation aircraft. The secondary mirror of the Ritchey-Chretien (R-C) optical system was chosen as a dichroic lens to realize the design of a common aperture system for the laser and MWIR. Point spread function (PSF) ellipticity was introduced to evaluate the coupling efficiency of the laser receiving system. A small aperture stop and narrow filter were set in the secondary image plane and an afocal light path of the laser system, respectively, and the stray light suppression ability of the small aperture stop was verified by modeling and simulation. With high-precision manufacturing technology by single point diamond turning (SPDT) and a high-efficiency dichroic coating, the laser/MWIR common aperture optical system with a 𝜑300 mm aluminum alloy mirror obtained images of buildings at a distance of 5 km with great quality. A civil aviation aircraft detection experiment was conducted. The results show that the common aperture system could detect and track long-distance civil aviation aircraft effectively, and the coverage was more than 450 km (signal-to-noise ratio = 6.3). It satisfied the application requirements for earlier warning and ranging of long-range targets in the area of aviation, aerospace and ground detection systems.

Ultrasonic Reflection Imaging for Discontinuity Detection of Rock Mass - Laboratory Study (암반 불연속면 탐측을 위한 초음파 반사 이미지 - 실내실험)

  • Lee, Jong-Sub;Kim, Seung-Sun;Kim, Dong-Hyun;Kim, Uk-Young;Lee, In-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.1
    • /
    • pp.51-65
    • /
    • 2007
  • The purpose of this study is the development and application of a high resolution ultrasonic wave imaging system to detect discontinuity plane in lab-scale rock models. This technique is based on received time series which capture the multiple reflections at interface. This study includes the fundamental aspects of ultrasonic wave propagation in rock mass, the selection of the optimal ultrasonic wave transducer, data gathering, a signal processing, imaging methods, and experiments. Experiments are carried out by the horizontal movement and rotation devices. Experimental studies show the discontinuity is well detected by the horizontal movement and rotation devices under water. Furthermore, the discontinuity and the cavity on the plaster block are identified by the rotation device. This study suggests that the new method may be an economical and effective tool for the detection of the discontinuity on rock mass.