DOI QR코드

DOI QR Code

Simulation for Small Lamellar Grating FTIR Spectrometer for Passive Remote Sensing

  • Chung, You Kyoung (Department of Chemistry and Basic Science Research Institute, Sungkyunkwan University) ;
  • Jo, Choong-Man (Department of Chemistry and Basic Science Research Institute, Sungkyunkwan University) ;
  • Kim, Seong Kyu (Department of Chemistry and Basic Science Research Institute, Sungkyunkwan University) ;
  • Kim, In Cheol (National Institute for Nanomaterials Technology) ;
  • Park, Do-Hyun (MOORI Technologies, Co.) ;
  • Bae, Hyo-Yook (MOORI Technologies, Co.) ;
  • Kang, Young Il (The 5th R&D Institute - 3, Agency for Defense Development)
  • Received : 2016.10.10
  • Accepted : 2016.11.08
  • Published : 2016.12.25

Abstract

A miniaturized FTIR spectrometer based on lamellar grating interferometry is being developed for passive remote-sensing. Consisting of a pair of micro-mirror arrays, the lamellar grating can be fabricated using MEMS technology. This paper describes a method to compute the optical field in the interferometer to optimize the design parameters of the lamellar grating FTIR spectrometer. The lower limit of the micro-mirror width in the grating is related to the formation of a Talbot image in the near field and is estimated to be about $100{\mu}m$ for the spectrometer to be used for the wavelength range of $7-14{\mu}m$. In calculating the far field at the detection window, the conventional Fraunhofer equation is inadequate for detection distance of our application, misleading the upper limit of the micro-mirror width to avoid interference from higher order diffractions. Instead, the far field is described by the unperturbed plane-wave combined with the boundary diffraction wave. As a result, the interference from the higher order diffractions turns out to be negligible as the micro-mirror width increases. Therefore, the upper limit of the micro-mirror width does not need to be set. Under this scheme, the interferometer patterns and their FT spectra are successfully generated.

Keywords

References

  1. R. Harig, "Passive remote sensing of pollutant clouds by Fourier-transform infrared spectrometry: signal-to-noise ratio as a function of spectral resolution," Appl. Opt. 43, 4603-4610 (2004). https://doi.org/10.1364/AO.43.004603
  2. P. R. Griffiths and J. A. de Haseth, Fourier Transform Infrared Spectroscopy, 2nd ed., (John Wiley & Sons, Inc., New York, NY, USA, 2007).
  3. P. B. Fellgett, "On the ultimate sensitivity and practical performance of radiation detectors," J. Opt. Soc. Am. 39, 970-979 (1949). https://doi.org/10.1364/JOSA.39.000970
  4. P. Jacquinot, "New developments in interference spectroscopy," Rep. Prog. Phys. 23, 267-312 (1960). https://doi.org/10.1088/0034-4885/23/1/305
  5. Refer the following web pages: https://www.technikon.com/projects/former/memfis, http://home.ku.edu.tr/-mems/memfisproject.html, http://cordis.europa.eu/project/rcn/86631_en.html.
  6. J. Strong and G. A. Vanasse, "Lamellar grating far-infrared interferometer," J. Opt. Soc. Am. 50, 113-118 (1960). https://doi.org/10.1364/JOSA.50.000113
  7. O. Manzardo, R. Michaely, F. Schadelin, W. Noell, T. Overstolz, N. D. Rooij, and H. P. Herzig, "Miniature lamellar grating interferometer based on silicon technology," Opt. Lett. 29, 1437-1439 (2004). https://doi.org/10.1364/OL.29.001437
  8. Y. Hongbin, Z. Guangya, C. F. Siong, L. Feiwen, W. Shouhua, and Z. Mingsheng, "An electromagnetically driven lamellar grating based Fourier transform microspectrometer," Micromech. Microeng. 18, 055016 (2008). https://doi.org/10.1088/0960-1317/18/5/055016
  9. W. Shouhua, Y. Hongbin, and C. F. Siong, "A miniaturized lamellar grating based Fourier transform spectrometer with electrostatic actuation," IEEE Sensors J. 10, 1869-1874 (2010). https://doi.org/10.1109/JSEN.2010.2049991
  10. C. Ataman, H. Urey, and A. Wolter, "A Fourier transform spectrometer using resonant vertical comb actuators," J. Micromech. Microeng. 16, 2517-2523 (2006). https://doi.org/10.1088/0960-1317/16/12/001
  11. O. Ferhanoglu, H. R. Seren, S. Luttjohann, and H. Urey, "Lamellar grating optimization for miniaturized fourier transform spectrometers," Opt. Express 17, 21289-21301 (2009). https://doi.org/10.1364/OE.17.021289
  12. H. R. Seren, S. Holmstrom, N. P. Ayerden, J. Sharma, and H. Urey, "Lamellar-grating-based MEMS fourier transform spectrometer," J. Microelectrochem. Sys. 21, 331-339 (2012). https://doi.org/10.1109/JMEMS.2011.2180362
  13. N. P. Ayerden, U. Aygun, S. T. S. Holmstrom, S. Olcer, B. Can, J.-L. Stehle, and H. Urey, "High-speed broadband FTIR system using MEMS," Appl. Opt. 53, 7267-7272 (2014). https://doi.org/10.1364/AO.53.007267
  14. J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts & Company Publishers, Englewood, CO, USA, 2005).
  15. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press, Cambridge, UK, 1999).
  16. H. F. Talbot, "Facts relating to optical science No. IV," Philos. Mag. Ser. III, 9, No. 56 (1836).
  17. G. A. Maggi, "Sulla propagazione libera e perturbata delle onde luminose in mezzo isotropo," Ann. di Math. IIa 16, 21-48 (1888).
  18. A. Rubinowicz, "Die Beugungswelle in der Kirchhoffschen Theorie der Beugungserscheinungen," Ann. Physik, 53, 257-278 (1917).
  19. J. B. Keller, "Geometrical theory of diffraction," J. Opt. Soc. Am. 52, 116-130 (1962). https://doi.org/10.1364/JOSA.52.000116
  20. S. Ganci, "Boundary diffraction wave theory of Rubinowicz for rectilinear apertures," Eur. J. Phys 18. 229-236 (1997). https://doi.org/10.1088/0143-0807/18/3/018
  21. U. Yalcin, "Uniform scattered fields of the extended theory of boundary diffraction wave for PEC surfaces," Prog. Electromag. Res. 7, 29-39 (2009). https://doi.org/10.2528/PIERM09031201
  22. S. Wang, "On principles of diffraction," Optik, 100, 107-108 (1995).
  23. J. H. Hannay, "Fresnel diffraction as an aperture edge integral," J. Mod. Opt. 47, 121-124 (2000). https://doi.org/10.1080/09500340008231410
  24. Y. Z. Umul, "Uniform boundary diffraction wave theory of Rubinowicz," J. Opt. Soc. Am. A. 27, 1613-1619 (2010). https://doi.org/10.1364/JOSAA.27.001613
  25. R. Borghi, "Uniform asymptotics of paraxial boundary diffraction wave," J. Opt. Soc. Am. A. 32, 685-696 (2015). https://doi.org/10.1364/JOSAA.32.000685
  26. S. Anokhov, "On problem of the rigorous diffraction quantitative description," Semicon. Phys. Quant. Elect. Optoelec. 2, 66-69 (1999).
  27. R. Kumar, S. K. Kaura, A. K. Sharma, D. P. Chhachhia, and A. K. Aggarwal, "Knife-edge diffraction as an interference phenomenon: an experimental reality", Opt. Laser Tech. 39, 256-261 (2007). https://doi.org/10.1016/j.optlastec.2005.08.008