• Title/Summary/Keyword: Planar.

Search Result 3,651, Processing Time 0.027 seconds

Design and Fabrication of Flexible Thin Multilayered Planar Coil for Micro Electromagnetic Induction Energy Harvester (초소형 전자기 유도방식 에너지 하베스터용 연성 박막 다적층 평판 코일 설계 및 제작)

  • Park, Hyunchul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.7
    • /
    • pp.601-606
    • /
    • 2016
  • In this paper, an energy harvester is developed that has advantages regarding piezoelectric noise minimization, mass production, and an easily available environmental energy source, electromagnetic induction, as well as low-frequency bandwidth and high amplitude. A process for fabricating a three-dimensional multilayered planar coil using micro-electro-mechanical systems (MEMS) on a flexible printed circuit board FPCB is introduced. Optimal shape and size were calculated via internal resistance and inductance, and a prototype was fabricated through the MEMS procedure while considering the possibility of mass production. Although the internal resistance matched the designed value, the electromotive force generated did not reach the intended amount. The main reason for the decrease in efficiency was the low area of coil outskirt exposed to the magnetic field while there was relative motion between the magnet and the coil.

The Characteristics Analysis of X-Y Planar Motor with New Permanent Magnet Array (새로운 영구자석 배열에 의한 X-Y평면 모터의 특성해석)

  • Huang, Rui;Lee, Dong-Yeup;Kim, Gyu-Tak
    • Proceedings of the KIEE Conference
    • /
    • 2006.04b
    • /
    • pp.124-126
    • /
    • 2006
  • In this paper, a synchronous permanent magnet planar motor (SPMPM) with new permanent magnet array is proposed and the magnetic field distribution is obtained analytically by using magnetic scalar potential. Compared to those of Asakawa, Chitayat and experimental data, the superiority and feasibility of the novel magnet array are verified. The characteristics of the synchronous permanent magnet planar motor with this novel magnet array such as inductance, back-EMF, and force are calculated by analytical method.

  • PDF

Fiber-to-planar waveguide coupler with a thin metal intermediate layer (얇은 금속 중간층이 포함된 광섬유-평면도파로 결합기)

  • 김광택;윤대성;손경락
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.4
    • /
    • pp.355-358
    • /
    • 2003
  • We report experimental results on the wavelength and polarization selective coupling properties of fiber-to-planar waveguide coupler having a thin metal intermediate layer. The influence of the metal layer thickness and the refractive index of the superstrate on the device properties has been measured and explained. The proposed device exhibited various application possibilities including polarizers, modulators, and sensors.

Determining 3D-shape of specular objects by using an encoded grid pattern light source

  • Ye, Xiongying;Fujimura, Sadao
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1758-1763
    • /
    • 1991
  • This paper describes a new method to determine the 3D-shape of objects consisting of specular planar surfaces. This method exploits a light source which is made of a diffuse plane with a grid pattern encoded in an M-sequence and uses a single image of the light source reflected by the objects to acquiring orientations and positions of the surfaces of the objects. When grid lines of the light source are reflected by a specular planar surface and perspectively projected on an image plane, a set of lines vanishing at a point are obtained on the image plane. The orientation of the specular planar surface is determined by using the vanishing point, and the position is determined by using the correspondence between lines on the image and lines on the light source, which is obtained by employing a characteristic regularity of the M-sequence. Before the vanishing points are calculated, the lines on the image are classified and correlated with the surfaces of objects by using slopes and positions of the lines and the regularity of the M-sequence. This method requires only a single image.

  • PDF

A New Expression of Near-Field Gain Correction Using Photonic Sensor and Planar Near-Field Measurements

  • Hirose, Masanobu;Kurokawa, Satoru
    • Journal of electromagnetic engineering and science
    • /
    • v.12 no.1
    • /
    • pp.85-93
    • /
    • 2012
  • We propose a new expression of the near-field gain correction to calculate the on-axis far-field gain from the onaxis near-field gain for a directive antenna. The new expression is represented by transversal vectorial transmitting characteristics of two antennas that are measured by planar near-field equipment. Due to the advantages of the photonic sensor, the utilization of the new expression realizes the measurements of the on-axis far-field gains for two kinds of double ridged waveguide horn antennas within 0.1 dB deviation from 1 GHz to 6 GHz without calibrating the photonic sensor system.

Kinematic Analysis and Optimal Design of 3-PPR Planar Parallel Manipulator

  • Park, Kee-Bong
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.528-537
    • /
    • 2003
  • This paper proposes a 3-PPR planar parallel manipulator, which consists of three active prismatic Joints, three passive prismatic joints, and three passive rotational joints. The analysis of the kinematics and the optimal design of the manipulator are also discussed. The proposed manipulator has the advantages of the closed type of direct kinematics and a void-free workspace with a convex type of borderline. For the kinematic analysis of the proposed manipulator, the direct kinematics, the inverse kinematics, and the inverse Jacobian of the manipulator are derived. After the rotational limits and the workspaces of the manipulator are investigated, the workspace of the manipulator is simulated. In addition, for the optimal design of the manipulator, the performance indices of the manipulator are investigated, and then an optimal design procedure Is carried out using Min-Max theory. Finally. one example using the optimal design is presented.

Extraction of Geometric Components of Buildings with Gradients-driven Properties

  • Seo, Su-Young;Kim, Byung-Guk
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.1
    • /
    • pp.723-733
    • /
    • 2009
  • This study proposes a sequence of procedures to extract building boundaries and planar patches through segmentation of rasterized lidar data. Although previous approaches to building extraction have been shown satisfactory, there still exist needs to increase the degree of automation. The methodologies proposed in this study are as follows: Firstly, lidar data are rasterized into grid form in order to exploit its rapid access to neighboring elevations and image operations. Secondly, propagation of errors in raw data is taken into account for in assessing the quality of gradients-driven properties and further in choosing suitable parameters. Thirdly, extraction of planar patches is conducted through a sequence of processes: histogram analysis, least squares fitting, and region merging. Experimental results show that the geometric components of building models could be extracted by the proposed approach in a streamlined way.

Phase Change for One to One Resonance of Nonlinear Cantilever Beam (비선형 외팔보의 일대일 공진에서의 위상변화)

  • Kim, Myoung-Gu;Pak, Chul-Hui;Cho, Chong-Du;Cho, Ho-Joon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.703-708
    • /
    • 2006
  • The cantilever beam with nonlinearity has many dynamic characteristics of nonlinear vibration. Nonlinear terms of a flexible cantilever beam include inertia, spring, damping, and warping. When the beam is given basic harmonic excitation, it shows planar and nonplanar vibrations due to one-to-one resonance. And when the one-to-one resonance occurs, the flexible beam shows different behaviors in those vibrations. For the one-to-one resonance occurring in each mode, the phase value of the planar vibration is different from that of the nonlinear vibration. This paper investigates the phase change and the phase difference between such planar and nonplanar vibrations which are caused by one-to-one resonance.

  • PDF

Design and Fabrication of a Planar Inverted-F Antenna for the Wireless LAN using the 5 GHz Band (5 GHz 대역의 무선 LAN용 평면 역-F 안테나 설계 및 제작)

  • 김용진;이상설
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.5
    • /
    • pp.459-467
    • /
    • 2002
  • A compact, lightweight and low-cost Planar Inverted-F Antenna(PIFA) for wireless LAN communication in the 5 GHz band is designed. The antenna is designed using the IE3D, the simulation tool of the Zeland Inc.. The characteristics of the implemented antenna are measured and analyzed. The antenna is resonated at the 5.25 GHz and its bandwidth is about 580 MHz under the condition of VSWR$\leq$1.5.

A Planar Yagi-Uda Dipole Antenna with Dual Tapered Balun by CPW-fed to CPS (CPW-fed to CPS 전이 급전에 의한 이중 테이퍼드 발룬을 포함한 평판형 Yagi-Uda 다이폴 안테나 설계)

  • Lee, Hyeonjin;Kim, Tea-Hong
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.64 no.4
    • /
    • pp.207-211
    • /
    • 2015
  • In this paper, we proposed a broadband planar Yagi-Uda dipole antenna with dual tapered balance and unblance (balun) by CPW-fed to CPS. This antenna consisted of driver, three directors, dual tapered balun and CPS-fed to CPS. The fed structure of CPW-fed to CPS had a benefit points much simpler than other planar Yagi-Uda antennas and provided design more flexibility in arranging the reflector. The proposed antenna is introduced dual tapered balun to improve the impedance matching. It balun is inserted between the CPW-ground and the CPS. The proposed antenna is exhibited the bandwidth of 4.78 GHz (1.94~6.72 GHz) (S11 < -10 dB) and the gain of 4.9~7.2 dBi within that bandwidth. This antenna will applicate wireless communication.