• Title/Summary/Keyword: Planar-type ZnO

Search Result 5, Processing Time 0.022 seconds

Preparation and Antibacterial Properties of the Planar-Type ZnO Powder Coated with Ag or CuO (Ag 또는 CuO를 코팅한 평판형 ZnO 분말의 합성 및 항균성 평가)

  • Hong, Da-Hee;Gwack, Ji-Yoo;Jeon, Deock-Seong;Jo, Dong-Hyeon;Lee, Gun-Sub;Lee, Jung-Hwan;Lee, Hee-Chul
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.3
    • /
    • pp.144-151
    • /
    • 2021
  • In the present work, planar-type ZnO powder of [0001] plane with a high aspect ratio range of 20:1 to 50:1 was synthesized. Ag or CuO could be coated on the planar-type ZnO powder by wet methods such as centrifugation or ball milling. During the coating, the average size of the powder was slightly increased while maintaining the shape and XRD pattern of ZnO. When Ag or CuO was coated, the absolute value of the zeta potential, as well as the concentration of oxygen vacancy, was increased. Ag or CuO coated planar-type ZnO power exhibited excellent antibacterial performance, which seems to be related to their high electrostatic attraction force. They could be made into a masterbatch by mixing with ABS resin, and their applicability to antibacterial substances was confirmed by manufacturing the caps of a keyboard.

Preparation and Characterization of Planar-type Artificial Calamine Powder with a High Aspect Ratio for the Application to Ultraviolet and Blue Band Protection Cosmetics (자외선 및 블루영역 차단 화장품 응용을 위한 박막 판형 인공 칼라민 소재의 합성 및 특성 평가 연구)

  • Lee, Jung-Hwan;Lee, Gun-Sub;Jo, Dong-Hyeon;Hong, Da-Hee;Yu, Jae-Hoon;Gwack, Ji-Yoo;Lee, Hee-Chul
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.47 no.3
    • /
    • pp.227-235
    • /
    • 2021
  • In this study, we have prepared pure planar-type ZnO and calamine powder containing both ZnO and Fe2O3 components as a raw material for cosmetics with UV and blue band blocking functions. The planar-type ZnO ceramic powder having a high aspect ratio in the range of 20:1 to 50:1 was synthesized by precipitation method in a zinc acetate and sodium citrate mixed solution with the electrolyte obtained by power generation with a zinc-air battery. The content of Fe2O3 in the artificial calamine ceramic powder could be increased by increasing the amount of iron chloride solution added, and in this case, some of the blue region of visible light and ultraviolet light were remarkably absorbed. When potassium acetate was added, the decomposition of the Zn(OH)42- anion in the solution was promoted to facilitate the growth of ZnO crystal in the form of a barrier wall in the vertical direction on the (0001) plane, which could increase UV absorption by providing more opportunities. By controlling the amount of iron chloride solution and potassium acetate solution added, the composition and shape of the thin film plate-shaped artificial calamine ceramic powder can be optimized, and when applied to cosmetic formulations, the light transmittance of the blue region can be greatly reduced.

The Effect of ${\pi}$ Bonds on the Calculated Dipole Moments for Tetrahedral and Square Planar [M(Ⅱ)$O_2S_2$] Type Complexes [M(II) = Co(II), Ni(II), Cu(II) and Zn(II)] (사면체 및 사각형 [M(II)$O_2S_2$]형태 착물의 쌍극자 모멘트에 대한 ${\pi}$결합의 영향 [M(II) = Co(II), Ni(II), Cu(II) 및 Zn])

  • Sangwoon Ahn;Jin Ha Park;Chang Jin Choi
    • Journal of the Korean Chemical Society
    • /
    • v.26 no.5
    • /
    • pp.265-273
    • /
    • 1982
  • The effect of ${\pi}$ bonds on the calculated dipole moments for square planar and tetrahedral [M(II)$O_2S_2$]] type complexes has been investigated by two different approaches. One is the approximate molecular orbital method based on the assumption that the mixing coefficient CM of the valence basis sets for the central metal ion and the appropriate ligand orbitals is equal for all ${\sigma}$ and ${\pi}$ bonding molecular orbitals. The other is the more refined calculation based on the semiempirical LCAO-MO method. If ${\sigma}$ bonds only are assumed to be formed, the calculated dipole moments for square planar and tetrahedral complexes are lower than those of the experimental values. If the contribution of ${\pi}$ bonds to the calculated dipole moments are fully considered, the calculated dipole moments for both square planar and tetrahedral [M(II)$O_2S_2$]] type complexes are higher than the experimental values. However if ${\pi}$ bonds are assumed to be delocalzed, the calculated dipole moments for tetrahedral [M(II$O_2S_2$]] type complexes fall in the range of the experimental values, but those for square planar complexes deviate from the experimental values. These results suggest that [M(II)$O_2S_2$]] type complexes may have the tetrahedral structure in inert solvent solution. This structure is in agreement with the experimental one. The calculated dipole moments for tetrahedral [M(II)$O_2S_2$]] type complexes indicate that the contribution of ${\pi}$ bonds to the calculated dipole moments may not be neglected.

  • PDF

Synthesis and Spectral Characterization of Antifungal Sensitive Schiff Base Transition Metal Complexes

  • Raman, N.;Sakthivel, A.;Rajasekaran, K.
    • Mycobiology
    • /
    • v.35 no.3
    • /
    • pp.150-153
    • /
    • 2007
  • New $N_2O_2$ donor type Schiff base has been designed and synthesized by condensing acetoacetanilido-4-aminoantipyrine with 2-aminobenzoic acid in ethanol. Solid metal complexes of the Schiff base with Cu(II), Ni(II), Co(II), Mn(II), Zn(II), VO(IV), Hg(II) and Cd(II) metal ions were synthesized and characterized by elemental analyses, magnetic susceptibility, molar conduction, fast atom bombardment (FAB) mass, IR, UV-Vis, and $^1H$ NMR spectral studies. The data show that the complexes have the composition of ML type. The UV-Vis. and magnetic susceptibility data of the complexes suggest a square-planar geometry around the central metal ion except VO(IV) complex which has square-pyramidal geometry. The in vitro antifungal activities of the compounds were tested against fungi such as Aspergillus niger, Aspergillus flavus, Rhizopus stolonifer, Candida albicans, Rhizoctonia bataicola and Trichoderma harizanum. All the metal complexes showed stronger antifungal activities than the free ligand. The minimum inhibitory concentrations (MIC) of the metal complexes were found in the range of $10{\sim}31{\mu}g/ml$.

Planar fuel cell design integrated with methanol reformer by using a high temperature membrane (고온형 멤브레인을 사용한 메탄올 개질 연료전지의 개질기 일체형 평판 설계)

  • Kim, Sung-Han;Jang, Jae-Hyuk;Gil, Jae-Hyoung;Lee, Hong-Ryul;Cha, Hye-Yeon;Ku, Bo-Sung;Jung, Chang-Ryul;Kundu, Arunaha;Miesse, Craig;Oh, Yong-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.467-470
    • /
    • 2006
  • For a mobile application such as cellular phone, micro fuel cells should be extremely compact and thin. RHFC can be an alternative solution because RHFC gives higher power density than DMFC and does not need ahydrogen storage vessel In this paper, RHFC using methanol fuel is made as a novel planar design without a PROX. Both reformer and cell are made closely in a same plate to share the heater of reformer with the cell. The PBI membrane is used in the cell. The reason is that high temperature of reformer can cause a performance drop when perfluorosulfonic acid membrane such as Nafion is used such a high temperature operation also guarantees the higher CO tolerance to MEA catalyst. The cell is designed as an air-breathing type which the cathode of the cell is opened to the air. The commercial Cu/ZnO/Al2O3 steam reformer catalyst is packed in reformer channel. The active area of MEA is $11.9cm^2$ and the peak power density was $27.5mW/cm^2$.

  • PDF