• Title/Summary/Keyword: Pixels

Search Result 2,456, Processing Time 0.026 seconds

Weighted Distance De-interlacing Algorithm Based on EDI and NAL (EDI와 NAL 알고리듬을 기반으로 한 거리 가중치 비월주사 방식 알고리듬)

  • Lee, Se-Young;Ku, Su-Il;Jeong, Je-Chang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.9C
    • /
    • pp.704-711
    • /
    • 2008
  • This paper proposes a new de-interlacing method which results in efficient visual improvement. In the proposed algorithm, the distance weight was considered and the previously developed the EDI (Edge Dependent Interpolation) algorithm and the NAL (New Adaptive Linear interpolation) algorithm were used as a basis. The do-interlacing method was divided into two main parts. First, the edge direction was found by using information of closer pixels. Then, missing pixels were interpolated along with the decided edge direction. In this paper, after predicting the edge through the EDI algorithm, missing pixels were interpolated by using the weighted distance based on the NAL algorithm. Experimental results indicate that the proposed algorithm be superior to the conventional algorithms in terms of the objective and subjective criteria.

A Ring Artifact Correction Method for a Flat-panel Detector Based Micro-CT System (평판 디텍터 기반 마이크로 CT시스템을 위한 Ring Artifact 보정 방법)

  • Kim, Gyu-Won;Lee, Soo-Yeol;Cho, Min-Hyoung
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.6
    • /
    • pp.476-481
    • /
    • 2009
  • The most troublesome artifacts in micro computed tomography (micro-CT) are ring artifacts. The ring artifacts are caused by non-uniform sensitivity and defective pixels of the x-ray detector. These ring artifacts seriously degrade the quality of CT images. In flat-panel detector based micro-CT systems, the ring artifacts are hardly removed by conventional correction methods of digital radiography, because very small difference of detector pixel signals may make severe ring artifacts. This paper presents a novel method to remove ring artifacts in flat-panel detector based micro-CT systems. First, the bad lines of a sinogram which are caused by defective pixels of the detector are identified, and then, they are corrected using a cubic spline interpolation technique. Finally, a ring artifacts free image is reconstructed from the corrected projections. We applied the method to various kinds of objects and found that the image qualities were much improved.

Topic Masks for Image Segmentation

  • Jeong, Young-Seob;Lim, Chae-Gyun;Jeong, Byeong-Soo;Choi, Ho-Jin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.12
    • /
    • pp.3274-3292
    • /
    • 2013
  • Unsupervised methods for image segmentation are recently drawing attention because most images do not have labels or tags. A topic model is such an unsupervised probabilistic method that captures latent aspects of data, where each latent aspect, or a topic, is associated with one homogeneous region. The results of topic models, however, usually have noises, which decreases the overall segmentation performance. In this paper, to improve the performance of image segmentation using topic models, we propose two topic masks applicable to topic assignments of homogeneous regions obtained from topic models. The topic masks capture the noises among the assigned topic assignments or topic labels, and remove the noises by replacements, just like image masks for pixels. However, as the nature of topic assignments is different from image pixels, the topic masks have properties that are different from the existing image masks for pixels. There are two contributions of this paper. First, the topic masks can be used to reduce the noises of topic assignments obtained from topic models for image segmentation tasks. Second, we test the effectiveness of the topic masks by applying them to segmented images obtained from the Latent Dirichlet Allocation model and the Spatial Latent Dirichlet Allocation model upon the MSRC image dataset. The empirical results show that one of the masks successfully reduces the topic noises.

Object Recognition Using Hausdorff Distance and Image Matching Algorithm (Hausdorff Distance와 이미지정합 알고리듬을 이용한 물체인식)

  • Kim, Dong-Gi;Lee, Wan-Jae;Gang, Lee-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.5
    • /
    • pp.841-849
    • /
    • 2001
  • The pixel information of the object was obtained sequentially and pixels were clustered to a label by the line labeling method. Feature points were determined by finding the slope for edge pixels after selecting the fixed number of edge pixels. The slope was estimated by the least square method to reduce the detection error. Once a matching point was determined by comparing the feature information of the object and the pattern, the parameters for translation, scaling and rotation were obtained by selecting the longer line of the two which passed through the matching point from left and right sides. Finally, modified Hausdorff Distance has been used to identify the similarity between the object and the given pattern. The multi-label method was developed for recognizing the patterns with more than one label, which performs the modified Hausdorff Distance twice. Experiments have been performed to verify the performance of the proposed algorithm and method for simple target image, complex target image, simple pattern, and complex pattern as well as the partially hidden object. It was proved via experiments that the proposed image matching algorithm for recognizing the object had a good performance of matching.

A Method of Color Image Segmentation Based on DBSCAN(Density Based Spatial Clustering of Applications with Noise) Using Compactness of Superpixels and Texture Information (슈퍼픽셀의 밀집도 및 텍스처정보를 이용한 DBSCAN기반 칼라영상분할)

  • Lee, Jeonghwan
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.11 no.4
    • /
    • pp.89-97
    • /
    • 2015
  • In this paper, a method of color image segmentation based on DBSCAN(Density Based Spatial Clustering of Applications with Noise) using compactness of superpixels and texture information is presented. The DBSCAN algorithm can generate clusters in large data sets by looking at the local density of data samples, using only two input parameters which called minimum number of data and distance of neighborhood data. Superpixel algorithms group pixels into perceptually meaningful atomic regions, which can be used to replace the rigid structure of the pixel grid. Each superpixel is consist of pixels with similar features such as luminance, color, textures etc. Superpixels are more efficient than pixels in case of large scale image processing. In this paper, superpixels are generated by SLIC(simple linear iterative clustering) as known popular. Superpixel characteristics are described by compactness, uniformity, boundary precision and recall. The compactness is important features to depict superpixel characteristics. Each superpixel is represented by Lab color spaces, compactness and texture information. DBSCAN clustering method applied to these feature spaces to segment a color image. To evaluate the performance of the proposed method, computer simulation is carried out to several outdoor images. The experimental results show that the proposed algorithm can provide good segmentation results on various images.

An Efficient Error Concealment Method Using Difference Values of Border Pixels (경계 화소의 차분값을 이용한 효과적인 에러 은닉 방법)

  • Hyun, Seung-Hwa;Kim, Sang-Soo;Kim, Yoo-Shin;Eom, Il-Kyu
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.5
    • /
    • pp.143-150
    • /
    • 2009
  • In this paper, we present a spatial domain error concealment method to recover a lost block in intra-coded frames. The edge directions of the lost block are estimated by the difference values of the border pixels of the accurately received blocks. The lost block is interpolated according to the estimated edge directions. Our algorithm can adaptively recover a lost block according to the estimated edge direction. The distances between pixels are used as weights for interpolation. In spite of the low computational cost, the proposed method outperforms the previous methods in objective and subjective qualities.

Microcalcification Detection Based on Region Growing Method with Contrast and Edge Sharpness in Digital X-ray Mammographic Images (명암 대비와 에지 선예도를 이용하는 영역 성장법에 의한 디지털 X선 맘모그램 영상에서의 미세 석회화 검출)

  • Won, C.H.;Kang, S.W.;Cho, J.H.
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.56-65
    • /
    • 2004
  • In this paper, we proposed the detection algorithm of microcalcification based on region growing method with contrast and edge sharpness in digital X-ray mammographic images. We extracted the local maximum pixel and watershed regions by using watershed algorithm. Then, we used the mean slope between local maximum and neighborhood pixels to extract microcalcification candidate pixels among local maximum pixels. During increasing threshold value to grow microcalcification region, at the maximum threshold value of the contrast and edge sharpness, the microcalcification area is decided. The regions of which area of grown candidate microcalfication region is larger than that of watershed region are excluded from microcalcifications. We showed the diagnosis algorithm can be used to aid diagnostic-radiologist in the early detection breast cancer.

Dual Sliding Statistics Switching Median Filter for the Removal of Low Level Random-Valued Impulse Noise

  • Suid, Mohd Helmi;Jusof, M F.M.;Ahmad, Mohd Ashraf
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1383-1391
    • /
    • 2018
  • A new nonlinear filtering algorithm for effectively denoising images corrupted by the random-valued impulse noise, called dual sliding statistics switching median (DSSSM) filter is presented in this paper. The proposed DSSSM filter is made up of two subunits; i.e. Impulse noise detection and noise filtering. Initially, the impulse noise detection stage of DSSSM algorithm begins by processing the statistics of a localized detection window in sorted order and non-sorted order, simultaneously. Next, the median of absolute difference (MAD) obtained from both sorted statistics and non-sorted statistics will be further processed in order to classify any possible noise pixels. Subsequently, the filtering stage will replace the detected noise pixels with the estimated median value of the surrounding pixels. In addition, fuzzy based local information is used in the filtering stage to help the filter preserves the edges and details. Extensive simulations results conducted on gray scale images indicate that the DSSSM filter performs significantly better than a number of well-known impulse noise filters existing in literature in terms of noise suppression and detail preservation; with as much as 30% impulse noise corruption rate. Finally, this DSSSM filter is algorithmically simple and suitable to be implemented for electronic imaging products.

The Methods for Improvement of MPEG Picture Quality using the Characteristics of Pixels in Block and Inter-Block Correlations (블록내 화소특성 및 블록간 상관성을 이용한 MPEG 화질 개선 방법)

  • Kyeong Hwan Lee
    • Journal of Korea Multimedia Society
    • /
    • v.5 no.1
    • /
    • pp.28-37
    • /
    • 2002
  • In this paper, we propose new methods used in MPEG codec that can improve the picture quality degradations of the reconstructed images, such as blocking artifacts, without additional computations. At first, a new 2-step MAD motion search is presented in the motion search and compensation course to reduce the computations and the errors of block boundary pixels. And we also present an overlapped 2-step MAD motion search that use the pixels beyond the block boundary using the reduced computations. In DCT/quantization course for intra-blocks, 1-D DCT predictive quantization and pixel difference predictive quantization, those use the adjacent pixel sets of the Previously reconstructed blocks and improve the inter-block continuity, are presented. As simulation results, proposed methods shows better picture qualities by reducing blocking artifacts than that of the conventional MPEG.

  • PDF

Defect Inspection of the Polarizer Film Using Singular Vector Decomposition (특이값 분해를 이용한 편광필름 결함 검출)

  • Jang, Kyung-Shik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.5
    • /
    • pp.997-1003
    • /
    • 2007
  • In this paper, we propose a global approach for automatic inspection of defects in the polarizer film image. The proposed method does not rely on local feature of the defect. It is based on a global image reconstruction scheme using the singular value decomposition(SVD). SVD is used to decompose the image and then obtain a diagonal matrix of the singular values. Among the singular values, the first singular value is used to reconstruct a image. In reconstructed image, the normal pixels in background region have a different characteristics from the pixels in defect region. It is obtained the ratio of pixels in the reconstructed image to ones in the original image and then the defects are detected based on the the statistical process of the ratio. The experiment results show that the proposed method is efficient for defect inspection of polarizer lam image.