• Title/Summary/Keyword: Pixel value

Search Result 703, Processing Time 0.032 seconds

Nonlinear Composite Filter for Gaussian and Impulse Noise Removal (가우시안 및 임펄스 잡음 제거를 위한 비선형 합성 필터)

  • Kwon, Se-Ik;Kim, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.3
    • /
    • pp.629-635
    • /
    • 2017
  • In this paper, we proposed a nonlinear synthesis filter for noise reduction to reduce the effects of Gaussian noise and impulse noise. When the centralization of the local mask is judged to be Gaussian noise by the noise judgment, the weight value of the weight filter are applied differently according to the spatial weight filter and the pixel change by using the sample variance in the local mask. And if it is determined as the impulse noise, we proposed an algorithm that applies different weights of local histogram weight filter and standard median filter according to noise density of mask. In order to evaluate the performance of the proposed filter algorithm, we used PSNR(peak signal to noise ratio) and compared existing methods and proposed filter algorithm in the mixed noise environment with Gaussian noise, impulsive noise, and two noises mixed.

The Performance Improvement of a Linear CCD Sensor Using an Automatic Threshold Control Algorithm for Displacement Measurement

  • Shin, Myung-Kwan;Choi, Kyo-Soon;Park, Kyi-Hwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1417-1422
    • /
    • 2005
  • Among the sensors mainly used for displacement measurement, there are a linear CCD(Charge Coupled Device) and a PSD(Position Sensitive Detector) as a non-contact type. Their structures are different very much, which means that the signal processing of both sensors should be applied in the different ways. Most of the displacement measurement systems to get the 3-D shape profile of an object using a linear CCD are a computer-based system. It means that all of algorithms and mathematical operations are performed through a computer program to measure the displacement. However, in this paper, the developed system has microprocessor and other digital components that make the system measure the displacement of an object without a computer. The thing different from the previous system is that AVR microprocessor and FPGA(Field Programmable Gate Array) technology, and a comparator is used to play the role of an A/D(Analog to Digital) converter. Furthermore, an ATC(Automatic Threshold Control) algorithm is applied to find the highest pixel data that has the real displacement information. According to the size of the light circle incident on the surface of the CCD, the threshold value to remove the noise and useless data is changed by the operation of AVR microprocessor. The total system consists of FPGA, AVR microprocessor, and the comparator. The developed system has the improvement and shows the better performance than the system not using the ATC algorithm for displacement measurement.

  • PDF

Design of H.264 Deblocking Filter for Low-Power Mobile Multimedia SoCs (저전력 휴대 멀티미디어 SoC를 위한 H.264 디블록킹 필터 설계)

  • Koo Jae-Il;Lee Seongsoo
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.1 s.343
    • /
    • pp.79-84
    • /
    • 2006
  • This paper proposed a novel H.264 deblocking filter for low-power mobile multimedia SoCs. In H.264 deblocking filter, filtering can be skipped on some pixels when pixel value differences satisfy some specific conditions. Furthermore, whole filtering can be skipped when quantization parameter is less than 16. Based on these features, power consumption can be significantly reduced by shutting down deblocking filter partially or as a whole. The proposed deblocking filter can shut down partial or whole blocks with simple control circuits. Common hardware performs both horizontal filtering and vertical filtering. It was implemented in silicon chip using $0.35{\mu}m$ standard cell library technology. The gate count is about 20,000 gates. The maximum operation frequency is 108MHz. The maximum throughput is 30 frame/s with CCIR601 image format.

An efficient Color Edge Fuzzy Interpolation Method for improving a Chromatic Aberration (색수차 개선을 위한 효율적인 컬러 에지 퍼지 보간 방법)

  • Byun, Oh-Sung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.10
    • /
    • pp.59-70
    • /
    • 2010
  • Each pixels become got pixel value for color of only one from among colors because of bayer pattern that light receiving device of image sensor which is used in HHP and digital camera writes only one color. Information of the missing pixels could infer perfect color image from using information of neighbor pixels by using CFA(Color Filter Array). In this paper, we derive relation between the average of the data from the light receiving device of image sensor and each color channel data. And by using this relation, a new efficient edge color fuzzy method for color interpolation is proposed. Also, missing luminance signal channel interpolation was fuzzy interpolation along any edges direction for reducing color noise and interpolating efficiently it. And in this paper, the proposed method has been proved improving average 2.4dB than the conventional method by using PSNR. Also, resolution of the image of the proposed method was similar to the original image by visual images, we has been verified to be decreased a chromatic aberration than image of conventional algorithms with simulation result.

Webcam-Based 2D Eye Gaze Estimation System By Means of Binary Deformable Eyeball Templates

  • Kim, Jin-Woo
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.5
    • /
    • pp.575-580
    • /
    • 2010
  • Eye gaze as a form of input was primarily developed for users who are unable to use usual interaction devices such as keyboard and the mouse; however, with the increasing accuracy in eye gaze detection with decreasing cost of development, it tends to be a practical interaction method for able-bodied users in soon future as well. This paper explores a low-cost, robust, rotation and illumination independent eye gaze system for gaze enhanced user interfaces. We introduce two brand-new algorithms for fast and sub-pixel precise pupil center detection and 2D Eye Gaze estimation by means of deformable template matching methodology. In this paper, we propose a new algorithm based on the deformable angular integral search algorithm based on minimum intensity value to localize eyeball (iris outer boundary) in gray scale eye region images. Basically, it finds the center of the pupil in order to use it in our second proposed algorithm which is about 2D eye gaze tracking. First, we detect the eye regions by means of Intel OpenCV AdaBoost Haar cascade classifiers and assign the approximate size of eyeball depending on the eye region size. Secondly, using DAISMI (Deformable Angular Integral Search by Minimum Intensity) algorithm, pupil center is detected. Then, by using the percentage of black pixels over eyeball circle area, we convert the image into binary (Black and white color) for being used in the next part: DTBGE (Deformable Template based 2D Gaze Estimation) algorithm. Finally, using DTBGE algorithm, initial pupil center coordinates are assigned and DTBGE creates new pupil center coordinates and estimates the final gaze directions and eyeball size. We have performed extensive experiments and achieved very encouraging results. Finally, we discuss the effectiveness of the proposed method through several experimental results.

A Hardware Design of Effective Intra Prediction Angular Mode Decision for HEVC Encoder (HEVC 부호기를 위한 효율적인 화면내 예측 Angular 모드 결정 하드웨어 설계)

  • Park, Seungyong;Choi, Juyong;Ryoo, Kwangki
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.4
    • /
    • pp.767-773
    • /
    • 2017
  • In this paper, we propose a design of Intra prediction angular mode decision for HEVC encoder. Intra prediction coding of HEVC is a method for predicting a current block by referring to samples reconstructed around a current block. Intra prediction supports a total of 35 modes with 1 DC mode, 1 Planar mode, and 33 Angular modes. Intra prediction coding of HEVC works by performing all 35 modes for efficient encoding. However, in order to process all of the 35 modes, the computational complexity and operational time required are high. Therefore, this paper proposes comparing the difference in the value of the original pixel, using an algorithm that determines angular mode efficiently. This new algorithm reduces the Hardware size. The hardware which is proposed was designed using Verilog HDL and was implemented in 65nm technology. Its gate count is 14.9K and operating speed is 2GHz.

Multi-camera image feature analysis for virtual space convergence (가상공간 융합을 위한 다중 카메라 영상 특징 분석)

  • Yun, Jong-Ho;Choi, Myung-Ryul;Lee, Sang-Sun
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.5
    • /
    • pp.19-28
    • /
    • 2017
  • In this paper, we propose a method to reduce the difference in image characteristics when multiple camera images are captured for virtual space production. Sixty-four images were used by cross-mounting eight bodies and lenses, respectively. Image analysis compares and analyzes the standard deviation of the histogram and pixel distribution values. As a result of the analysis, it shows different image characteristics depending on the lens or image sensor, though it is a camera of the same model. In this paper, we have adjusted the distribution of the overall brightness value of the image to compensate for this difference. As a result, the average deviation was the maximum of (Indoor: 6.89, outdoor: 24.23), we obtained images with almost no deviation (Indoor: maximum 0.42, outdoor: maximum: 2.73). In the future, we will study and apply more accurate image analysis methods than image brightness distribution.

The Influence of Quantization Table in view of Information Hiding Techniques Modifying Coefficients in Frequency Domain (주파수 영역 계수 변경을 이용한 정보은닉기술에서의 양자화 테이블의 영향력)

  • Choi, Yong-Soo;Kim, Hyoung-Joong;Park, Chun-Myoung
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.46 no.1
    • /
    • pp.56-63
    • /
    • 2009
  • Nowdays, Most of Internet Contents delivered as a compressed file. It gives many advantages like deduction of communication bandwidth and transmission time etc. In case of JPEG Compression, Quantization is the most important procedure which accomplish the compression. In general signal processing, Quantization is the process which converts continuous analog signal to discrete digital signal. As you known already, Quantization over JPEG compression is to reduce magnitude of pixel value in spatial domain or coefficient in frequency domain. A lot of Data Hiding algorithms also developed to applicable for those compressed files. In this paper, we are going to unveil the influence of quantization table which used in the process of JPEG compression. Even thought most of algorithm modify frequency coefficients with considering image quality, they are ignoring the influence of quantization factor corresponding with the modified frequency coefficient. If existing algorithm adapt this result, they can easily evaluate their performances.

A Study on the Performance Improvement of Image Segmentation by Selective Application of Structuring Element in MPEG-4 (MPEG-4 기반 영상 분할에서 구조요소의 선택적 적용에 의한 분할성능 개선에 관한 연구)

  • 이완범;김환용
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.5
    • /
    • pp.165-173
    • /
    • 2004
  • Since the conventional image segmentation methods using mathematical morphology tend to yield over-segmented results, they normally need postprocess which merges small regions to obtain larger ones. To solve this over-segmentation problem without postprocess had to increase size of structuring element used marker extraction. As size of structuring element is very large, edge of region segments incorrectly. Therefore, this paper selectively applies structuring element of mathematical morphology to improve performance of image segmentation and classifies input image into texture region, edge region and simple region using averaged local variance and image gradient. Proposed image segmentation method removes the cause for over-segmentation of image as selectively applies size of structuring element to each region. Simulation results show that proposed method correctly segment for pixel region of similar luminance value and more correctly search texture region and edge region than conventional methods.

Multiple Shortfall Estimation Method for Image Resolution Enhancement (영상 해상도 개선을 위한 다중 부족분 추정 방법)

  • Kim, Won-Hee;Kim, Jong-Nam;Jeong, Shin-Il
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.3
    • /
    • pp.105-111
    • /
    • 2014
  • Image resolution enhancement is a technique to generate high-resolution image through improving resolution of low-resolution obtained image. It is important to estimate correctly missing pixel value in low-resolution obtained image for image resolution enhancement. In this paper, multiple shortfall estimation method for image resolution enhancement is proposed. The proposed method estimate separate multiple shortfall by predictive degradation-restoration processing in sub-images of obtained image, and generate result image combining the estimated shortfall and interpolated obtained-image. Lastly, final reconstruction image is generated by deblurring of the result image. The experimental results demonstrate that the proposed method has the best results of all compared methods in objective image quality index: PSNR, SSIM, and FSIM. The quality of reconstructed image is superior to all compared methods, and the proposed method has better lower computational complexity than compared methods. The proposed method can be useful for image resolution enhancement.