• Title/Summary/Keyword: Pixel based classification

Search Result 173, Processing Time 0.03 seconds

Implementation of the Stone Classification with AI Algorithm Based on VGGNet Neural Networks (VGGNet을 활용한 석재분류 인공지능 알고리즘 구현)

  • Choi, Kyung Nam
    • Smart Media Journal
    • /
    • v.10 no.1
    • /
    • pp.32-38
    • /
    • 2021
  • Image classification through deep learning on the image from photographs has been a very active research field for the past several years. In this paper, we propose a method of automatically discriminating stone images from domestic source through deep learning, which is to use Python's hash library to scan 300×300 pixel photo images of granites such as Hwangdeungseok, Goheungseok, and Pocheonseok, performing data preprocessing to create learning images by examining duplicate images for each stone, removing duplicate images with the same hash value as a result of the inspection, and deep learning by stone. In addition, to utilize VGGNet, the size of the images for each stone is resized to 224×224 pixels, learned in VGG16 where the ratio of training and verification data for learning is 80% versus 20%. After training of deep learning, the loss function graph and the accuracy graph were generated, and the prediction results of the deep learning model were output for the three kinds of stone images.

Determination of Tumor Boundaries on CT Images Using Unsupervised Clustering Algorithm (비교사적 군집화 알고리즘을 이용한 전산화 단층영상의 병소부위 결정에 관한 연구)

  • Lee, Kyung-Hoo;Ji, Young-Hoon;Lee, Dong-Han;Yoo, Seoung-Yul;Cho, Chul-Koo;Kim, Mi-Sook;Yoo, Hyung-Jun;Kwon, Soo-Il;Chun, Jun-Chul
    • Journal of Radiation Protection and Research
    • /
    • v.26 no.2
    • /
    • pp.59-66
    • /
    • 2001
  • It is a hot issue to determine the spatial location and shape of tumor boundary in fractionated stereotactic radiotherapy (FSRT). We could get consecutive transaxial plane images from the phantom (paraffin) and 4 patients with brain tumor using helical computed tomography(HCT). K-means classification algorithm was adjusted to change raw data pixel value in CT images into classified average pixel value. The classified images consists of 5 regions that ate tumor region (TR), normal region (NR), combination region (CR), uncommitted region (UR) and artifact region (AR). The major concern was how to separate the normal region from tumor region in the combination area. Relative average deviation analysis was adjusted to alter average pixel values of 5 regions into 2 regions of normal and tumor region to define maximum point among average deviation pixel values. And then we drawn gross tumor volume (GTV) boundary by connecting maximum points in images using semi-automatic contour method by IDL(Interactive Data Language) program. The error limit of the ROI boundary in homogeneous phantom is estimated within ${\pm}1%$. In case of 4 patients, we could confirm that the tumor lesions described by physician and the lesions described automatically by the K-mean classification algorithm and relative average deviation analyses were similar. These methods can make uncertain boundary between normal and tumor region into clear boundary. Therefore it will be useful in the CT images-based treatment planning especially to use above procedure apply prescribed method when CT images intermittently fail to visualize tumor volume comparing to MRI images.

  • PDF

De-interlacing and Block Code Generation For Outsole Model Recognition In Moving Picture (동영상에서 신발 밑창 모델 인식을 위한 인터레이스 제거 및 블록 코드 생성 기법)

  • Kim Cheol-Ki
    • Journal of Intelligence and Information Systems
    • /
    • v.12 no.1
    • /
    • pp.33-41
    • /
    • 2006
  • This paper presents a method that automatically recognizes products into model type, which it flows with the conveyor belt. The specific interlaced image are occurred by moving image when we use the NTSC based camera. It is impossible to process interlaced images, so a suitable post-processing is required. For the purpose of this processing, after it remove interlaced images using de-interlacing method, it leads rectangle region of object by thresholding. And then, after rectangle region is separated into several blocks through edge detection, we calculate pixel numbers per each block, re-classify using its average, and classify products into model type. Through experiments, we know that the proposed method represent high classification ratio.

  • PDF

Development of Deep Learning-based Land Monitoring Web Service (딥러닝 기반의 국토모니터링 웹 서비스 개발)

  • In-Hak Kong;Dong-Hoon Jeong;Gu-Ha Jeong
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.3
    • /
    • pp.275-284
    • /
    • 2023
  • Land monitoring involves systematically understanding changes in land use, leveraging spatial information such as satellite imagery and aerial photographs. Recently, the integration of deep learning technologies, notably object detection and semantic segmentation, into land monitoring has spurred active research. This study developed a web service to facilitate such integrations, allowing users to analyze aerial and drone images using CNN models. The web service architecture comprises AI, WEB/WAS, and DB servers and employs three primary deep learning models: DeepLab V3, YOLO, and Rotated Mask R-CNN. Specifically, YOLO offers rapid detection capabilities, Rotated Mask R-CNN excels in detecting rotated objects, while DeepLab V3 provides pixel-wise image classification. The performance of these models fluctuates depending on the quantity and quality of the training data. Anticipated to be integrated into the LX Corporation's operational network and the Land-XI system, this service is expected to enhance the accuracy and efficiency of land monitoring.

A Study on Multi-modal Near-IR Face and Iris Recognition on Mobile Phones (휴대폰 환경에서의 근적외선 얼굴 및 홍채 다중 인식 연구)

  • Park, Kang-Ryoung;Han, Song-Yi;Kang, Byung-Jun;Park, So-Young
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.2
    • /
    • pp.1-9
    • /
    • 2008
  • As the security requirements of mobile phones have been increasing, there have been extensive researches using one biometric feature (e.g., an iris, a fingerprint, or a face image) for authentication. Due to the limitation of uni-modal biometrics, we propose a method that combines face and iris images in order to improve accuracy in mobile environments. This paper presents four advantages and contributions over previous research. First, in order to capture both face and iris image at fast speed and simultaneously, we use a built-in conventional mega pixel camera in mobile phone, which is revised to capture the NIR (Near-InfraRed) face and iris image. Second, in order to increase the authentication accuracy of face and iris, we propose a score level fusion method based on SVM (Support Vector Machine). Third, to reduce the classification complexities of SVM and intra-variation of face and iris data, we normalize the input face and iris data, respectively. For face, a NIR illuminator and NIR passing filter on camera are used to reduce the illumination variance caused by environmental visible lighting and the consequent saturated region in face by the NIR illuminator is normalized by low processing logarithmic algorithm considering mobile phone. For iris, image transform into polar coordinate and iris code shifting are used for obtaining robust identification accuracy irrespective of image capturing condition. Fourth, to increase the processing speed on mobile phone, we use integer based face and iris authentication algorithms. Experimental results were tested with face and iris images by mega-pixel camera of mobile phone. It showed that the authentication accuracy using SVM was better than those of uni-modal (face or iris), SUM, MAX, NIN and weighted SUM rules.

A Research on Network Intrusion Detection based on Discrete Preprocessing Method and Convolution Neural Network (이산화 전처리 방식 및 컨볼루션 신경망을 활용한 네트워크 침입 탐지에 대한 연구)

  • Yoo, JiHoon;Min, Byeongjun;Kim, Sangsoo;Shin, Dongil;Shin, Dongkyoo
    • Journal of Internet Computing and Services
    • /
    • v.22 no.2
    • /
    • pp.29-39
    • /
    • 2021
  • As damages to individuals, private sectors, and businesses increase due to newly occurring cyber attacks, the underlying network security problem has emerged as a major problem in computer systems. Therefore, NIDS using machine learning and deep learning is being studied to improve the limitations that occur in the existing Network Intrusion Detection System. In this study, a deep learning-based NIDS model study is conducted using the Convolution Neural Network (CNN) algorithm. For the image classification-based CNN algorithm learning, a discrete algorithm for continuity variables was added in the preprocessing stage used previously, and the predicted variables were expressed in a linear relationship and converted into easy-to-interpret data. Finally, the network packet processed through the above process is mapped to a square matrix structure and converted into a pixel image. For the performance evaluation of the proposed model, NSL-KDD, a representative network packet data, was used, and accuracy, precision, recall, and f1-score were used as performance indicators. As a result of the experiment, the proposed model showed the highest performance with an accuracy of 85%, and the harmonic mean (F1-Score) of the R2L class with a small number of training samples was 71%, showing very good performance compared to other models.

Application of KOMSAT-2 Imageries for Change Detection of Land use and Land Cover in the West Coasts of the Korean Peninsula (서해연안 토지이용 및 토지피복 변화탐지를 위한 KOMPSAT-2 영상의 활용)

  • Sunwoo, Wooyeon;Kim, Daeun;Kang, Seokkoo;Choi, Minha
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.2
    • /
    • pp.141-153
    • /
    • 2016
  • Reliable assessment of Land Use and Land Cover (LULC) changes greatly improves many practical issues in hydrography, socio-geographical research such as the observation of erosion and accretion, coastal monitoring, ecological effects evaluation. Remote sensing imageries can offer the outstanding capability to monitor nature and extent of land and associated changes over time. Nowadays accurate analysis using remote sensing imageries with high spatio-temporal resolution is required for environmental monitoring. This study develops a methodology of mapping and change detection in LULC by using classified Korea Multi-Purpose Satellite-2 (KOMPSAT-2) multispectral imageries at Jeonbuk and Jeonnam provinces including protected tidal flats located in the west coasts of Korean peninsula from 2008 to 2015. The LULC maps generated from unsupervised classification were analyzed and evaluated by post-classification change detection methods. The LULC assessment in Jeonbuk and Jeonnam areas had not showed significant changes over time although developed area was gradually increased only by 1.97% and 4.34% at both areas respectively. Overall, the results of this study quantify the land cover change patterns through pixel based analysis which demonstrate the potential of multispectral KOMPSAT-2 images to provide effective and economical LULC maps in the coastal zone over time. This LULC information would be of great interest to the environmental and policy mangers for the better coastal management and political decisions.

Estimation of Fractional Vegetation Cover in Sand Dunes Using Multi-spectral Images from Fixed-wing UAV

  • Choi, Seok Keun;Lee, Soung Ki;Jung, Sung Heuk;Choi, Jae Wan;Choi, Do Yoen;Chun, Sook Jin
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.4
    • /
    • pp.431-441
    • /
    • 2016
  • Since the use of UAV (Unmanned Aerial Vehicle) is convenient for the acquisition of data on broad or inaccessible regions, it is nowadays used to establish spatial information for various fields, such as the environment, ecosystem, forest, or for military purposes. In this study, the process of estimating FVC (Fractional Vegetation Cover), based on multi-spectral UAV, to overcome the limitations of conventional methods is suggested. Hence, we propose that the FVC map is generated by using multi-spectral imaging. First, two types of result classifications were obtained based on RF (Random Forest) using RGB images and NDVI (Normalized Difference Vegetation Index) with RGB images. Then, the result map was reclassified into vegetation and non-vegetation. Finally, an FVC map-based RF were generated by using pixel calculation and FVC map-based GI (Gutman and Ignatov) model were indirectly made by fixed parameters. The method of adding NDVI shows a relatively higher accuracy compared to that of adding only RGB, and in particular, the GI model shows a lower RMSE (Root Mean Square Error) with 0.182 than RF. In this regard, the availability of the GI model which uses only the values of NDVI is higher than that of RF whose accuracy varies according to the results of classification. Our results showed that the GI mode ensures the quality of the FVC if the NDVI maintained at a uniform level. This can be easily achieved by using a UAV, which can provide vegetation data to improve the estimation of FVC.

Image Segmentation Using Block Classification and Watershed Algorithm (블록분류와 워터쉐드를 이용한 영상분할 알고리듬)

  • Lim, Jae-Hyuck;Park, Dong-Kwon;Won, Chee-Sun
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.1
    • /
    • pp.81-92
    • /
    • 1999
  • In this paper, we propose a new image segmentation algorithm which can be use din object-based image coding applications such as MPGA-4. Since the conventional objet segmentation methods based on mathematical morphology tend to yield oversegmented results, they normally need a postprocess which merges small regions to obtain a larger one. To solve this oversegmentation problem, in this paper, we prosed a block-based segmentation algorithm that can identify large texture regions in the image. Also, by applying the watershed algorithm to the image blocks between the homogeneous regions, we can obtain the exact pixel-based contour. Experimental results show that the proposed algorithm yields larger segments, particularly in the textural area, and reduces the computational complexities.

  • PDF

Classification of Natural and Artificial Forests from KOMPSAT-3/3A/5 Images Using Deep Neural Network (심층신경망을 이용한 KOMPSAT-3/3A/5 영상으로부터 자연림과 인공림의 분류)

  • Baek, Won-Kyung;Lee, Yong-Suk;Park, Sung-Hwan;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_3
    • /
    • pp.1965-1974
    • /
    • 2021
  • Satellite remote sensing approach can be actively used for forest monitoring. Especially, it is much meaningful to utilize Korea multi-purpose satellites, an independently operated satellite in Korea, for forest monitoring of Korea, Recently, several studies have been performed to exploit meaningful information from satellite remote sensed data via machine learning approaches. The forest information produced through machine learning approaches can be used to support the efficiency of traditional forest monitoring methods, such as in-situ survey or qualitative analysis of aerial image. The performance of machine learning approaches is greatly depending on the characteristics of study area and data. Thus, it is very important to survey the best model among the various machine learning models. In this study, the performance of deep neural network to classify artificial or natural forests was analyzed in Samcheok, Korea. As a result, the pixel accuracy was about 0.857. F1 scores for natural and artificial forests were about 0.917 and 0.433 respectively. The F1 score of artificial forest was low. However, we can find that the artificial and natural forest classification performance improvement of about 0.06 and 0.10 in F1 scores, compared to the results from single layered sigmoid artificial neural network. Based on these results, it is necessary to find a more appropriate model for the forest type classification by applying additional models based on a convolutional neural network.