• Title/Summary/Keyword: Pixel Space

Search Result 292, Processing Time 0.026 seconds

Discussion of Preliminary Design Review for MIRIS, the Main Payload of STSAT-3

  • Han, Won-Yong;Jin, Ho;Park, Jang-Hyun;Nam, Uk-Won;Yuk, In-Soo;Lee, Sung-Ho;Park, Young-Sik;Park, Sung-Jun;Lee, Dae-Hee;Ree, Chang-H.;Jeong, Woong-Seob;Moon, Bong-Kon;Cha, Sang-Mok;Cho, Seoung-Hyun;Rhee, Seung-Woo;Park, Jong-Oh;Lee, Seung-Heon;Lee, Hyung-Mok;Matsumoto, Toshio
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.27.1-27.1
    • /
    • 2008
  • KASI (Korea Astronomy and Space Science Institute) is developing a compact wide-field survey space telescope system, MIRIS (The Multi-purpose IR Imaging System) to be launched in 2010 as the main payload of the Korea Science and Technology Satellite 3. Through recent System Design Review (SDR) and Preliminary Design Review (PDR), most of the system design concept was reviewed and confirmed. The near IR imaging system adopted short F/2 optics for wide field low resolution observation at wavelength band 0.9~2.0 um minimizing the effect of attitude control system. The mechanical system is composed of a cover, baffle, optics, and detector system using a $256\times256$ Teledyne PICNIC FPA providing a $3.67\times3.67$ degree field of view with a pixel scale of 51.6 arcsec. We designed a support system to minimize heat transfer with Muti-Layer Insulation. The electronics of the MIRIS system is composed of 7 boards including DSP, control, SCIF. Particular attention is being paid to develop mission operation scenario for space observation to minimize IR background radiation from the Earth and Sun. The scientific purpose of MIRIS is to survey the Galactic plane in the emission line of Pa$\alpha$ ($1.88{\mu}m$) and to detect the cosmic infrared background (CIB) radiation. The CIB is being suspected to be originated from the first generation stars of the Universe and we will test this hypothesis by comparing the fluctuations in I (0.9~1.2 um) and H (1.2~2.0 um) bands to search the red shifted Lyman cutoff signature.

  • PDF

INTERSTELLAR DUST IN M51 FROM IRC IMAGES

  • Egusa, Fumi;Sakon, I.;Onaka, T.;Matsuhara, H.;Arimatsu, K.;Suzuki, T.;Wada, T.;The IRC team, The IRC team
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.253-256
    • /
    • 2012
  • We present the IRC images of M51, a pair of interacting galaxies. Given the high angular resolution (7.4") and the wide field of view (~ 10') covering almost the entire M51 system, we investigate dust properties and their connection to the spiral arm structure. We have applied image-filtering processes including the wavelet analysis to the N3 image, which traces the total stellar mass best among the IRC bands. From this filtered image, the center, arm, and interarm regions are defined. A color, or flux ratio among the MIR bands, has been measured at each pixel (3.7" in size). We find a wide variety of S7/S11 with a difference between arm and interarm regions. We also find that at some positions S11 seems to be higher than predicted by MW dust models. Estimated contributions from the stellar continuum and gas emission lines to the band are not enough to explain this discrepancy. From these results, we deduce that the PAH ionization condition and its fraction to the total dust mass in M51 are different from those in MW.

The Removal of Trembling Artifacts for FORMOSAT-2

  • Chang Li-Hsueh;Wu Shun-Chi;Cheng Hsin-Huei;Chen Nai-Yu
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.142-145
    • /
    • 2005
  • Since the successful launch of FORMOSAT -2 satellite by National Space Organization of Taiwan in May 2004, the Remote Sensing Instrument (RSI) on- board the FORMOSAT -2 has continuously acquired images at one panchromatic and four multi-spectral bands (http://www.nspo.org.tw). In general, the RSI performs well and receives high quality images which proved to be very useful for various applications. However, some RSI panchromatic products exhibit obvious trembling artifact that must be removed. Preliminary study reveals that the trembling artifact is caused by the instability of the spacecraft attitude. Though the magnitude of this artifact is actually less than half of a pixel, it affects the applicability of panchromatic products. A procedure removing this artifact is therefore needed for providing image products of consistent quality. Due to the nature of trembling artifact, it is impossible to describe the trembling amount by employing an analytic model. Relied only on image itself, an algorithm determining trembling amount and removing accordingly the trembling artifact is proposed. The algorithm consists of 3 stages. First, a cross-correlation based scheme is used to measure the relative shift between adjacent scan lines. Follows, the trembling amount is estimated from the measured value. For this purpose, the Fourier transform is utilized to characterize random shifts in frequency domain. An adaptive estimation method is then applied to deduce the approximate trembling amount. In the subsequent stage, image re-sampling operation is applied to restore the trembling-free product. Experimental results show that by applying the proposed algorithm, the unpleasant trembling artifact is no longer evident.

  • PDF

Development of the Near Infrared Camera System for Astronomical Application

  • Moon, Bong-Kon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.39.2-39.2
    • /
    • 2010
  • In this paper, I present the domestic development of near infrared camera systems for the ground telescope and the space satellite. These systems are the first infrared instruments made for astronomical observation in Korea. KASINICS (KASI Near Infrared Camera System) was developed to be installed on the 1.8m telescope of the Bohyunsan Optical Astronomy Observatory (BOAO) in Korea. KASINICS is equipped with a $512{\times}512$ InSb array enable L band observations as well as J, H, and Ks bands. The field-of-view of the array is $3.3'{\times}3.3'$ with a resolution of 0.39"/pixel. It employs an Offner relay optical system providing a cold stop to eliminate thermal background emission from the telescope structures. From the test observation, limiting magnitudes are J=17.6, H=17.5, Ks=16.1 and L(narrow)=10.0 mag at a signal-to-noise ratio of 10 in an integration time of 100 s. MIRIS (Multi-purpose InfraRed Imaging System) is the main payload of the STSAT-3 in Korea. MIRIS Space Observation Camera (SOC) covers the observation wavelength from $0.9{\mu}m$ to $2.0{\mu}m$ with a wide field of view $3.67^{\circ}{\times}3.67^{\circ}$. The PICNIC HgCdTe detector in a cold box is cooled down below 100K by a micro Stirling cooler of which cooling capacity is 220mW at 77K. MIRIS SOC adopts passive cooling technique to chill the telescope below 200K by pointing to the deep space (3K). The cooling mechanism employs a radiator, a Winston cone baffle, a thermal shield, MLI of 30 layers, and GFRP pipe support in the system. Opto-mechanical analysis was made in order to estimate and compensate possible stresses from the thermal contraction of mounting parts at cryogenic temperatures. Finite Element Analysis (FEA) of mechanical structure was also conducted to ensure safety and stability in launching environments and in orbit. MIRIS SOC will mainly perform the Galactic plane survey with narrow band filters (Pa $\alpha$ and Pa $\alpha$ continuum) and CIB (Cosmic Infrared Background) observation with wide band filters (I and H) driven by a cryogenic stepping motor.

  • PDF

고에너지 입자 검출기 STEIN의 아날로그회로 설계

  • Kim, Jin-Gyu;Nam, Ji-Seon;Seo, Yong-Myeong;Jeon, Sang-Min;Mcbride, Steve;Larson, Davin;Jin, Ho;Seon, Jong-Ho;Lee, Dong-Hun;Lin, Robert P.;Harvey, Peter
    • Bulletin of the Korean Space Science Society
    • /
    • 2010.04a
    • /
    • pp.37.5-38
    • /
    • 2010
  • 경희대학교 우주탐사학과에서는 우주공간 탐사를 위해 Trio(TRiplet Ionospheric Observatory)-CINEMA(Cubesat for Ions, Neutrals, Electrons and MAgnetic fields)로 명명된 초소형 위성을 개발하고 있다. 과학임무는 지구 저궤도에서 고에너지 입자를 관측하는 것이며, 이를 위해 고에너지 (2~300keV) 입자 검출기와 자기장 측정기가 탑재된다. 저에너지 입자 검출기 시스템인 STEIN(SupraThermal Electrons, Ions, Neutrals)은 $1\times4$ Array의 개선된 실리콘 검출기와 이온, 전자, 중성입자를 분리할 수 있는 정전장 편향기, 그리고 신호를 처리하는 전자회로로 구성되어있다. 설계된 전자회로는 매우 작은 검출기 기판, 아날로그 기판과 디지털 기판으로 이루어져 있고, 475mW 이하의 저 전력으로 동작한다. 또한 2~100keV의 에너지를 1keV이하의 해상도로 30,000event/sec/pixel 까지 관측 할 수 있도록 회로를 설계하였다. 센서로 들어온 입자로 인해 발생한 펄스의 신호는 4개의 아날로그 회로가 담당하게 되는데, Folded cascode amplifier를 배치하여 증폭률을 높인 Charge sensitive amplifier를 통해 신호를 증폭하고, $2{\mu}s$ unipolar gaussian shaping amplifier를 통해 읽기 쉽게 처리된 신호를 상한파고선별기와 하한파고 선별기를 통해 유효 값 여부를 판단하고, 피크 검출기를 통해 피크의 타이밍을 측정한 뒤 신호를 아날로그-디지털 변환 회로를 통하여 8bit의 값으로 나타내어, 입자들의 Spectrum을 측정하게 된다. 크기와 소비전력이 적음에도 검출성능이 우수하기 때문에 이 시스템은 향후 우주탐사 시스템에 있어 매우 중요한 역할을 수행 할 것으로 생각한다.

  • PDF

Intermediate Image Generation based on Disparity Path Search in Block of Disparity Space Image (시차공간영상에서의 구간별 시차 경로 탐색을 이용한 중간 영상 생성)

  • Kwak, Ji-Hyun;Kim, Kyung-Tae
    • The KIPS Transactions:PartB
    • /
    • v.15B no.1
    • /
    • pp.9-16
    • /
    • 2008
  • In this paper, we present an algorithm for synthesizing intermediate view image from a stereoscopic pair of images. An image of multiview is need for people in order to easily recognize 3D image. However, if many cameras are use for that, not only does system get more complicated but also transmission rating cause a big trouble. Hence, stereo images are photograph and issue on the sending side and algorithm to generate several intermediate view image is able to be use on the receiving side. The proposed method is based on disparity space image. First of all, disparity space image that is depicted by the gap of pixel followed by disparity of stereo image is generated. Disparity map is made by utilizing disparity space image for searching for optimal disparity path then eventual intermediate view image is generated after occlusion region which does not match is processed. Experimental results illustrate the performance of the proposed technique and we obtained a high quality image of more than 30 dB PSNR.

DEVELOPMENT OF CCD IMAGING SYSTEM USING THERMOELECTRIC COOLING METHOD (열전 냉각방식을 이용한 극미광 영상장비 개발)

  • Park, Young-Sik;Lee, Chung-Woo;Jin, Ho;Han, Won-Yong;Nam, Uk-Won;Lee, Yong-Sam
    • Journal of Astronomy and Space Sciences
    • /
    • v.17 no.1
    • /
    • pp.53-66
    • /
    • 2000
  • We developed low light CCD imaging system using thermoelectric cooling method collaboration with a company to design a commercial model. It consists of Kodak KAF-0401E(768$\times$512 pixels) CCD chip, thermoelectric module manufactured by Thermotek. This TEC system can reach an operative temperature of $-25^{\circ}C$. We employed an Uniblitz VS25s shutter and it has capability a minimum exposure time 80ms. The system components are an interface card using a Korea Astronomy Observatory (hereafter KAO) ISA bus controller, image acquisition with AD9816 chip, that is 12bit video processor. The performance test with this imaging system showed good operation within the initial specification of our design. It shows a dark current less than 0.4e-/pixel/sec at a temperature of $-10^{\circ}C$, a linearity 99.9$\pm$0.1%, gain 4.24e-/adu, and system noise is 25.3e-(rms). For low temperature CCD operation, we designed a TEC, which uses a one-stage peltier module and forced air heat exchanger. This TEC imaging system enables accurate photometry($\pm$0.01mag) even though the CCD is not at 'conventional' cryogenic temperatures(140k). The system can be a useful instrument for any other imaging applications. Finally, with this system, we obtained several images of astronomical objects for system performance tests.

  • PDF

3D world space recognition system using stereo camera (스테레오 카메라를 이용한 3차원 공간 인식 시스템)

  • Lee, Dong-Seok;Kim, Su-Dong;Lee, Dong-Wook;Yoo, Ji-Sang
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.215-218
    • /
    • 2008
  • 본 논문에서는 스테레오 카메라로부터 획득된 좌, 우 영상의 변이를 추정하여 3차원 공간 좌표(x, y, z)를 얻어내고, 거리측정과 가상공간 제어를 통해 사용자에게 현실감을 제공하는 실시간 3차원 공간 인식 시스템을 제안한다. 스테레오 카메라로 부터 획득된 좌, 우 영상은 시점의 차이 때문에 동일 물체에 대한 좌, 우 영상의 좌표 값의 차이를 발생시키는 데 이를 변이(disparity)라 정의한다. 관심 영역의 변이를 추정할 때 일반적으로 관심 영역의 모든 화소(pixel)의 변이를 추정하지만, 제안한 알고리즘에서는 관심 영역의 2차원 중심 좌표(x, y)의 변이만을 추정하여 계산량을 줄이고 실시간 처리가 가능하도록 하였다. 카메라 파라미터를 이용하여 획득된 변이로부터 깊이 정보(depth)를 얻어내고 3차원 공간 좌표를 획득한다. 손을 관심 영역으로 설정한 시스템에서 3차원 공간 좌표는 실시간으로 사용자의 손의 움직임에 의해 획득되고, 가상공간(virtual space)에 적용되어 사용자가 가상공간을 조작할 수 있는 듯한 느낌을 준다. 실험을 통해 제안한 알고리즘이 1.5m 거리 내에서의 깊이 측정시 평균 0.68cm의 오차를 가짐을 확인 할 수 있었다.

  • PDF

CCD OBSERVATIONS OF SOME VARIABLE STARS (CCD를 이용한 변광성의 측광관측)

  • 정장해;이용삼;이충욱;양감징
    • Journal of Astronomy and Space Sciences
    • /
    • v.11 no.2
    • /
    • pp.185-195
    • /
    • 1994
  • Using $1024\times1024$ pixels CCD camera of ChungBuk National University Observatory (CBNUO), 62 photometric observations were made on January 11-12, 1993. A time of minimum lights of U Cep was determined as JD Hel 2448999.7274 from our data. On October 21-22 in 1993, CCD photometry in V and R for GW Cephei and V700 Cygni was carried out with 309${\times}$584 pixels cooled CCD system of Behlen Observatory, University of Nebraska-Lincoln (BOUNL) and 168 observations were obtained. From the data times of minimum lights JD Hel 2449282.8485 for GW Cep and JD Hel 2449282.7979 were determined. To developed a new CCD system of CBNUO, the CCD photometry method using at CBNUO is compared with at BOUNL.

  • PDF

Identification of Martian Cave Skylights Using the Temperature Change During Day and Night

  • Jung, Jongil;Yi, Yu;Kim, Eojin
    • Journal of Astronomy and Space Sciences
    • /
    • v.31 no.2
    • /
    • pp.141-144
    • /
    • 2014
  • Recently, cave candidates have been discovered on other planets besides the Earth, such as the Moon and Mars. When we go to other planets, caves could be possible human habitats providing natural protection from cosmic threats. In this study, seven cave candidates have been found on Pavonis Mons and Ascraeus Mons in Tharsis Montes on Mars. The cave candidates were selected using the images of the Context Camera (CTX) on the Mars Reconnaissance Orbiter (MRO). The Context Camera could provide images with the high resolution of 6 meter per pixel. The diameter of the candidates ranges from 50 to 100m. Cushing et al. (2007) have analyzed the temperature change at daytime and nighttime using the Thermal Emission Imaging System (THEMIS) for the sites of potential cave candidates. Similarly, we have examined the temperature change at daytime and at nighttime for seven cave candidates using the method of Cushing et al. (2007). Among those, only one candidate showed a distinct temperature change. However, we cannot verify a cave based on the temperature change only and further study is required for the improvement of this method to identify caves more clearly.