• Title/Summary/Keyword: Pixel Analysis

Search Result 703, Processing Time 0.026 seconds

The usability of the MR Breast perfusion image and Time-Signal Intensity curve in Breast cancer patients (유방암 환자에서 MR Breast perfusion 영상과 시간-신호강도 곡선의 유용성)

  • Cho, Jae-Hwan;Lee, Hae-Kag
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.9
    • /
    • pp.4068-4074
    • /
    • 2011
  • The purpose of this study was to examine the usefulness of MR Breast perfusion image and time-signal intensity curve in patients diagnosed with breast cancer. We selected on 20 patients who were histologically diagnosed to have invasive ductal carcinoma (IDC) from March 2009 to December 2010. First, the Breast perfusion mapping image was reconstructed after obtaining the dynamic contrast enhancement image. The reconstructed image measured the slope, maximal relative enhancement, and time to peak on the detail including the lesion region, normal region, back ground region after obtaining the time-signal intensity curve. The lesion region and normal and slope of the back ground part were measured with the quantitive analytical method about the research and the average was compared and was analyze. In the qualitative analysis, the signal strength of each pixel was analyze with the macroscopic and being high it was low, the medium (2) performed the division of (a) by the three-point standard and the average was measured. The findings from the quantitative image analysis are the following: In the lesion region, the slope and maximal relative enhancement were the highestest among and the time to peak was the highestest in the back ground region. In the qualitative analysis, the breast perfusion image showed a diagnostic efficiency.

A Novel Method for Automated Honeycomb Segmentation in HRCT Using Pathology-specific Morphological Analysis (병리특이적 형태분석 기법을 이용한 HRCT 영상에서의 새로운 봉와양폐 자동 분할 방법)

  • Kim, Young Jae;Kim, Tae Yun;Lee, Seung Hyun;Kim, Kwang Gi;Kim, Jong Hyo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.1 no.2
    • /
    • pp.109-114
    • /
    • 2012
  • Honeycombs are dense structures that small cysts, which generally have about 2~10 mm in diameter, are surrounded by the wall of fibrosis. When honeycomb is found in the patients, the incidence of acute exacerbation is generally very high. Thus, the observation and quantitative measurement of honeycomb are considered as a significant marker for clinical diagnosis. In this point of view, we propose an automatic segmentation method using morphological image processing and assessment of the degree of clustering techniques. Firstly, image noises were removed by the Gaussian filtering and then a morphological dilation method was applied to segment lung regions. Secondly, honeycomb cyst candidates were detected through the 8-neighborhood pixel exploration, and then non-cyst regions were removed using the region growing method and wall pattern testing. Lastly, final honeycomb regions were segmented through the extraction of dense regions which are consisted of two or more cysts using cluster analysis. The proposed method applied to 80 High resolution computed tomography (HRCT) images and achieved a sensitivity of 89.4% and PPV (Positive Predictive Value) of 72.2%.

Error Analysis of Linear Mixture Model using Laboratory Spectral Measurements (실내 분광 측정자료를 이용한 선형혼합모델의 오차 분석)

  • Kim, Sun-Hwa;Shin, Jung-Il;Shin, Sang-Min;Lee, Kyu-Sung
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.6
    • /
    • pp.537-546
    • /
    • 2007
  • In hyperspectral remote sensing, linear spectral mixture model is a common procedure decomposing into the components of a mixed pixel and estimating the fraction of each end-member. Although linear spectral mixture model is frequently used in geology and mineral mapping because this model is simple and easy to apply, this model is not always valid in forest and urban area having rather complex structure. This study aims to analyze possible error for applying linear spectral mixture model. For the study, we measured laboratory spectra of mixture sample, having various materials, fractions, distributions. The accuracy of linear mixture model is low with the mixture sample having similar fraction because the multi-scattering between components is maximum. Additionally, this multi-scattering is related to the types, fraction, and distribution of components. Further analysis is necessary to quantify errors from linear spectral mixture model.

Transferring Calibrations Between on Farm Whole Grain NIR Analysers

  • Clancy, Phillip J.
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1210-1210
    • /
    • 2001
  • On farm analysis of protein, moisture and oil in cereals and oil seeds is quickly being adopted by Australian farmers. The benefits of being able to measure protein and oil in grains and oil seeds are several : $\square$ Optimize crop payments $\square$ Monitor effects of fertilization $\square$ Blend on farm to meet market requirements $\square$ Off farm marketing - sell crop with load by load analysis However farmers are not NIR spectroscopists and the process of calibrating instruments has to the duty of the supplier. With the potential number of On Farm analyser being in the thousands, then the task of calibrating each instrument would be impossible, let alone the problems encountered with updating calibrations from season to season. As such, NIR technology Australia has developed a mechanism for \ulcorner\ulcorner\ulcorner their range of Cropscan 2000G NIR analysers so that a single calibration can be transferred from the master instrument to every slave instrument. Whole grain analysis has been developed over the last 10 years using Near Infrared Transmission through a sample of grain with a pathlength varying from 5-30mm. A continuous spectrum from 800-1100nm is the optimal wavelength coverage fro these applications and a grating based spectrophotometer has proven to provide the best means of producing this spectrum. The most important aspect of standardizing NIB instruments is to duplicate the spectral information. The task is to align spectrum from the slave instruments to the master instrument in terms of wavelength positioning and then to adjust the spectral response at each wavelength in order that the slave instruments mimic the master instrument. The Cropscan 2000G and 2000B Whole Grain Analyser use flat field spectrographs to produce a spectrum from 720-1100nm and a silicon photodiode array detector to collect the spectrum at approximately 10nm intervals. The concave holographic gratings used in the flat field spectrographs are produced by a process of photo lithography. As such each grating is an exact replica of the original. To align wavelengths in these instruments, NIR wheat sample scanned on the master and the slave instruments provides three check points in the spectrum to make a more exact alignment. Once the wavelengths are matched then many samples of wheat, approximately 10, exhibiting absorbances from 2 to 4.5 Abu, are scanned on the master and then on each slave. Using a simple linear regression technique, a slope and bias adjustment is made for each pixel of the detector. This process corrects the spectral response at each wavelength so that the slave instruments produce the same spectra as the master instrument. It is important to use as broad a range of absorbances in the samples so that a good slope and bias estimate can be calculated. These Slope and Bias (S'||'&'||'B) factors are then downloaded into the slave instruments. Calibrations developed on the master instrument can then be downloaded onto the slave instruments and perform similarly to the master instrument. The data shown in this paper illustrates the process of calculating these S'||'&'||'B factors and the transfer of calibrations for wheat, barley and sorghum between several instruments.

  • PDF

Analysis of Tissue Equivalent Characteristics of Agar Phantom for Hyperthermia Therapy (온열종양치료 한천 팬텀의 조직등가 특성 분석)

  • Jeong-Geun Park;Kyeong-Hwan Jeong;Jeong-Min Seo
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.6
    • /
    • pp.985-991
    • /
    • 2023
  • A tissue-equivalent phantom is necessary for quality control of hyperthermia therapy. However, since there is no phantom for this purpose, phantoms made from agar are being used in various studies. The tissue-equivalent properties of the agar phantom were confirmed by comparison with the tissue-equivalent material bolus in this study. CT images of the agar phantom and bolus were acquired, and tissue equivalent characteristics were analyzed with image analysis and dose calculation using a computerized radiation therapy planning system. The average pixel value was 96.960±10.999 in bolus, 108.559±8.233 in 3% agar phantom, and 111.844±8.651 in 4% agar phantom. Using the SSD technique, 100 cGy was prescribed at a depth of 1.5 cm and 6 MV X -ray was set to irradiated to 10x10 cm2, and the absorbed dose according to depth was calculated from the central axis of the beam. The intraclass correlation coefficient of dose distribution of bolus, 3% agar phantom, and 4% agar phantom was 0.979 (p<.001, 95%CI .957-.991). The density (g/cm3) at the point where the absorbed dose was calculated was 0.990±0.020 at the bolus, 1.018±0.020 at the 3% agar phantom, and 1.035±0.024 at the 4% agar phantom. In this study, the internal density distribution and uniformity of the agar phantom were confirmed to be appropriate as a tissue equivalent material by analysis of CT images and a computerized radiation therapy planning system.

Application of KOMSAT-2 Imageries for Change Detection of Land use and Land Cover in the West Coasts of the Korean Peninsula (서해연안 토지이용 및 토지피복 변화탐지를 위한 KOMPSAT-2 영상의 활용)

  • Sunwoo, Wooyeon;Kim, Daeun;Kang, Seokkoo;Choi, Minha
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.2
    • /
    • pp.141-153
    • /
    • 2016
  • Reliable assessment of Land Use and Land Cover (LULC) changes greatly improves many practical issues in hydrography, socio-geographical research such as the observation of erosion and accretion, coastal monitoring, ecological effects evaluation. Remote sensing imageries can offer the outstanding capability to monitor nature and extent of land and associated changes over time. Nowadays accurate analysis using remote sensing imageries with high spatio-temporal resolution is required for environmental monitoring. This study develops a methodology of mapping and change detection in LULC by using classified Korea Multi-Purpose Satellite-2 (KOMPSAT-2) multispectral imageries at Jeonbuk and Jeonnam provinces including protected tidal flats located in the west coasts of Korean peninsula from 2008 to 2015. The LULC maps generated from unsupervised classification were analyzed and evaluated by post-classification change detection methods. The LULC assessment in Jeonbuk and Jeonnam areas had not showed significant changes over time although developed area was gradually increased only by 1.97% and 4.34% at both areas respectively. Overall, the results of this study quantify the land cover change patterns through pixel based analysis which demonstrate the potential of multispectral KOMPSAT-2 images to provide effective and economical LULC maps in the coastal zone over time. This LULC information would be of great interest to the environmental and policy mangers for the better coastal management and political decisions.

Post-filtering in Low Bit Rate Moving Picture Coding, and Subjective and Objective Evaluation of Post-filtering (저 전송률 동화상 압축에서 후처리 방법 및 후처리 방법의 주관적 객관적 평가)

  • 이영렬;김윤수;박현욱
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.8B
    • /
    • pp.1518-1531
    • /
    • 1999
  • The reconstructed images from highly compressed MPEG or H.263 data have noticeable image degradations, such as blocking artifacts near the block boundaries, corner outliers at cross points of blocks, and ringing noise near image edges, because the MPEG or H.263 quantizes the transformed coefficients of 8$\times$8 pixel blocks. A post-processing algorithm has been proposed by authors to reduce quantization effects, such as blocking artifacts, corner outliers, and ringing noise, in MPEG-decompressed images. Our signal-adaptive post-processing algorithm reduces the quantization effects adaptively by using both spatial frequency and temporal information extracted from the compressed data. The blocking artifacts are reduced by one-dimensional (1-D) horizontal and vertical low pass filtering (LPF), and the ringing noise is reduced by two-dimensional (2-D) signal-adaptive filtering (SAF). A comparison study of the subjective quality evaluation using modified single stimulus method (MSSM), the objective quality evaluation (PSNR) and the computation complexity analysis between the signal-adaptive post-processing algorithm and the MPEG-4 VM (Verification Model) post-processing algorithm is performed by computer simulation with several MPEG-4 image sequences. According to the comparison study, the subjective image qualities of both algorithms are similar, whereas the PSNR and the comparison complexity analysis of the signal-adaptive post-processing algorithm shows better performance than the VM post-processing algorithm.

  • PDF

Comparison of Texture Images and Application of Template Matching for Geo-spatial Feature Analysis Based on Remote Sensing Data (원격탐사 자료 기반 지형공간 특성분석을 위한 텍스처 영상 비교와 템플레이트 정합의 적용)

  • Yoo Hee Young;Jeon So Hee;Lee Kiwon;Kwon Byung-Doo
    • Journal of the Korean earth science society
    • /
    • v.26 no.7
    • /
    • pp.683-690
    • /
    • 2005
  • As remote sensing imagery with high spatial resolution (e.g. pixel resolution of 1m or less) is used widely in the specific application domains, the requirements of advanced methods for this imagery are increasing. Among many applicable methods, the texture image analysis, which was characterized by the spatial distribution of the gray levels in a neighborhood, can be regarded as one useful method. In the texture image, we compared and analyzed different results according to various directions, kernel sizes, and parameter types for the GLCM algorithm. Then, we studied spatial feature characteristics within each result image. In addition, a template matching program which can search spatial patterns using template images selected from original and texture images was also embodied and applied. Probabilities were examined on the basis of the results. These results would anticipate effective applications for detecting and analyzing specific shaped geological or other complex features using high spatial resolution imagery.

A Study on the Accuracy of Calculating Slopes for Mountainous Landform in Korea Using GIS Software - Focused on the Contour Interval of Source Data and the Resolution - (GIS Software를 이용한 한국 산악 지형의 경사도 산출 정확도에 관한 연구 -원자료의 등고선 간격과 해상력을 중심으로-)

  • 신진민;이규석
    • Spatial Information Research
    • /
    • v.7 no.1
    • /
    • pp.1-12
    • /
    • 1999
  • The DTM(Digital Terrain Model) in GIS(Geographical Information System) shows the elevation from interpolation using data points surveyed. In panoramic flat landform, pixel size, resolution of source data may not be the problem in using DTM However, in mountainous landform like Korea, appropriate resolution accuracy of source data are important factors to represent the topography concerned. In this study, the difference in contour interval of source data, the resolution after interpolation, and different data structures were compared to figure out the accuracy of slope calculation using DTM from the topographic maps of Togyusan National Park Two types of GIS softwares, Idrisi(grid) ver. 2.0 using the altitude matrices and ArcView(TIN) ver. 3.0a using TIN were used for this purpose. After the analysis the conclusions are as follows: 1) The coarser resolution, the more smoothing effect inrepresenting the topography. 2) The coarser resolution the more difference between the grid-based Idrisi and the TIN-based ArcView. 3) Based on the comparison analysis of error for 30 points from clustering, there is not much difference among 10, 20, 30 m resolution in TIM-based Airview ranging from 4.9 to 6.2n However, the coarser resolution the more error for elevation and slope in the grid-based Idrisi. ranging from 6.3 to 10.9m. 4) Both Idrisi and ArcView could net consider breaklines of lanform like hilltops, valley bottoms.

  • PDF

Stylized Specular Reflections Using Projective Textures based on Principal Curvature Analysis (주곡률 해석 기반의 투영 텍스처를 이용한 스타일 반사 효과)

  • Lee, Hwan-Jik;Choi, Jung-Ju
    • Journal of the HCI Society of Korea
    • /
    • v.1 no.1
    • /
    • pp.37-44
    • /
    • 2006
  • Specular reflections provide the visual feedback that describes the material type of an object, its local shape, and lighting environment. In photorealistic rendering, there have been a number of research available to render specular reflections effectively based on a local reflection model. In traditional cel animations and cartoons, specular reflections plays important role in representing artistic intentions for an object and its related environment reflections, so the shapes of highlights are quite stylistic. In this paper, we present a method to render and control stylized specular reflections using projective textures based on principal curvature analysis. Specifying a texture as a pattern of a highlight and projecting the texture on the specular region of a given 3D model, we can obtain a stylized representation of specular reflections. For a given polygonal model, a view point, and a light source, we first find the maximum specular intensity point, and then locate the texture projector along the line parallel to the normal vector and passing through the point. The orientation of the projector is determined by the principal directions at the point. Finally, the size of the projection frustum is determined by the principal curvatures corresponding to the principal directions. The proposed method can control the position, orientation, and size of the specular reflection efficiently by translating the projector along the principal directions, rotating the projector about the normal vector, and scaling the principal curvatures, respectively. The method is be applicable to real-time applications such as cartoon style 3D games. We implement the method by Microsoft DirectX 9.0c SDK and programmable vertex/pixel shaders on Nvidia GeForce FX 7800 graphics subsystems. According to our experimental results, we can render and control the stylized specular reflections for a 3D model of several ten thousands of triangles in real-time.

  • PDF