• Title/Summary/Keyword: Pixel

Search Result 3,993, Processing Time 0.026 seconds

Improving light collection efficiency using partitioned light guide on pixelated scintillator-based γ-ray imager

  • Hyeon, Suyeon;Hammig, Mark;Jeong, Manhee
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1760-1768
    • /
    • 2022
  • When gamma-camera sensor modules, which are key components of radiation imagers, are derived from the coupling between scintillators and photosensors, the light collection efficiency is an important factor in determining the effectiveness with which the instrument can identify nuclides via their derived gamma-ray spectra. If the pixel area of the scintillator is larger than the pixel area of the photosensor, light loss and cross-talk between pixels of the photosensor can result in information loss, thereby degrading the precision of the energy estimate and the accuracy of the position-of-interaction determination derived from each active pixel in a coded-aperture based gamma camera. Here we present two methods to overcome the information loss associated with the loss of photons created by scintillation pixels that are coupled to an associated silicon photomultiplier pixel. Specifically, we detail the use of either: (1) light guides, or (2) scintillation pixel areas that match the area of the SiPM pixel. Compared with scintillator/SiPM couplings that have slightly mismatched intercept areas, the experimental results show that both methods substantially improve both the energy and spatial resolution by increasing light collection efficiency, but in terms of the image sensitivity and image quality, only slight improvements are accrued.

Data Hiding Technique using the Characteristics of Neighboring Pixels and Encryption Techniques

  • Jung, Soo-Mok
    • International journal of advanced smart convergence
    • /
    • v.11 no.4
    • /
    • pp.163-169
    • /
    • 2022
  • In this paper, we propose a data hiding technique that effectively hides confidential data in the LSB of an image pixel by using the characteristics of the neighboring pixels of the image and the encryption techniques. In the proposed technique, the boundary surface of the image and the flat surface with little change in pixel values are investigated. At the boundary surface of the image, 1 bit of confidential data is encrypted and hidden in the LSB of the boundary pixel to preserve the characteristics of the boundary surface. In the pixels of the plane where the change in pixel value is small, 2 bits secret data is encrypted and hidden in the lower 2 bits of the corresponding pixel. In this way, when confidential data is hidden in an image, the amount of confidential data hidden in the image is greatly increased while maintaining excellent image quality. In addition, the security of hidden confidential data is strongly maintained. When confidential data is hidden by applying the proposed technique, the amount of confidential data concealed increases by up to 92.2% compared to the existing LSB method. The proposed technique can be effectively used to hide copyright information in commercial images.

Covered Microlens Structure for Quad Color Filter Array of CMOS Image Sensor

  • Jae-Hyeok Hwang;Yunkyung Kim
    • Current Optics and Photonics
    • /
    • v.7 no.5
    • /
    • pp.485-495
    • /
    • 2023
  • The pixel size in high-resolution complementary metal-oxide-semiconductor (CMOS) image sensors continues to shrink due to chip size limitations. However, the pixel pitch's miniaturization causes deterioration of optical performance. As one solution, a quad color filter (CF) array with pixel binning has been developed to enhance sensitivity. For high sensitivity, the microlens structure also needs to be optimized as the CF arrays change. In this paper, the covered microlens, which consist of four microlenses covered by one large microlens, are proposed for the quad CF array in the backside illumination pixel structure. To evaluate the optical performance, the suggested microlens structure was simulated from 0.5 ㎛ to 1.0 ㎛ pixels at the center and edge of the sensors. Moreover, all pixel structures were compared with and without in-pixel deep trench isolation (DTI), which works to distribute incident light uniformly into each photodiode. The suggested structure was evaluated with an optical simulation using the finite-difference time-domain method for numerical analysis of the optical characteristics. Compared to the conventional microlens, the suggested microlens show 29.1% and 33.9% maximum enhancement of sensitivity at the center and edge of the sensor, respectively. Therefore, the covered microlens demonstrated the highly sensitive image sensor with a quad CF array.

A Study on the Characteristics of Smartphone Camera as a Medical Radiation Detector (의료 방사선 검출기로써 스마트폰 카메라의 특성에 관한 연구)

  • Kang, Han Gyu;Kim, Ho Chul
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.5
    • /
    • pp.143-151
    • /
    • 2016
  • The aim of this study is to investigate the optimal algorithm to extract medical radiation induced pixel signal from complementary metal-oxide semiconductor (CMOS) sensors of smartphones camera. The pixel intensity and pixel number of smartphone camera were measured as the X-ray dose was increased. The front camera of the smartphone camera has low noise property and excellent dose response as compared to the back camera of the smartphone. The indirect method which uses scintillation crystal in front of the smartphone camera, couldn't improve the X-ray detection efficiency as compared to the direct method which does not use any scintillator in front of the smartphone camera. When we used the algorithm which employing threshold level on the pixel intensity and pixel number, the dose linearity was more higher for the pixel intensity rather for the pixel number. The use of pixel intensity of Y color component which represents the grey scale, would be efficient in terms of the radiation detection efficiency and reducing the complexity of the image processing. We expect that the radiation dose monitoring can be managed effectively and systematically by using the proposed radiation detection algorithm, thus eventually will contribute to the public healthcare.

Design of Low Power LTPS AMOLED Panel and Pixel Compensation Circuit with High Aperture Ratio (고 개구율 화소보상회로를 갖는 저전력 LTPS AMOLED 패널 설계)

  • Kang, Hong-Seok;Woo, Doo-Hyung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.10
    • /
    • pp.34-41
    • /
    • 2010
  • We proposed the new pixel compensation circuit with high aperture ratio and the driving method for the large-area, low-power AMOLED applications in this study. We designed with the low-temperature poly-silicon(LTPS) thin film transistors(TFTs) that has poor uniformity but good mobility and stability. To lower the error rate of the pixel circuit and to improve the aperture ratio for bottom emission method, we simplified the pixel compensation circuit. Because the proposed pixel compensation circuit with high aperture ratio has very low contrast ratio for conventional driving methods, we proposed the new driving method and circuit for high contrast ratio. Black data insertion was introduced to improve the characteristics for moving images. The pixel circuit was designed for 19.6" WXGA bottom-emission AMOLED panel, and the average aperture ratio of the pixel circuit is improved from 33.0% to 41.9%. For the TFT's $V_{TH}$ variation of ${\pm}0.2\;V$, the non-uniformity and contrast ratio of the designed panel was estimated under 6% and over 100000:1 respectively.

A Sparse-ON Pixel Two-Dimensional 4-Level 4/6 Balanced-Modulation Code in Holographic Data Storage Systems (홀로그래픽 데이터 저장장치를 위한 저밀도 ON 픽셀 2차원 4-레벨 4/6 균형 변조부호)

  • Park, Keunhwan;Lee, Jaejin
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.11
    • /
    • pp.9-14
    • /
    • 2016
  • In the holographic data storage system, the data can be stored more than one bit per pixel and the storage capacity and transmission rate can be increased. In this paper, we proposed a sparse-ON pixel 4/6 balanced-modulation code that the code rate is 1.33 (bit/pixel) with uniform page density. Even though the performance of the proposed sparse-ON pixel 4/6 balanced-code is similar to 2/3 and 6/9 modulation codes, it can increase the storage capacity more than these modulation codes and also store more pages in a volume by reducing the rate of ON pixels to mitigate IPI (inter-page interference).

Evaluation of Quantitative Effectiveness of MR-DTI Analysis with and without Functional MRI (기능적 자기공명영상 사용유무에 따른 확산텐서영상 분석의 유효성 평가)

  • Lee, Dong-Hoon;Park, Ji-Won;Hong, Cheol-Pyo
    • The Journal of Korean Physical Therapy
    • /
    • v.25 no.5
    • /
    • pp.260-265
    • /
    • 2013
  • Purpose: This study was conducted in order to evaluate the quantitative effectiveness of region of interest (ROI) setting in MR-DTI analysis with and without fMRI activation results. Methods: Ten right-handed normal volunteers participated in this study. DTI and fMRI datasets for each subject were obtained using a 1.5T MRI system. For neural fiber tracking, ROIs were drawn using two methods: The drawing points were located in the fMRI activation areas or areas randomly selected by users. In this study, the neural fiber tract targeted the corticospinal tract (CST) Quantitative analyses were performed and compared. The pixel numbers passing through the fiber tract in the individual brain volume were counted. The ratios between the ROI pixel numbers and the extracted fiber pixel numbers, and the ratios between the fiber pixel numbers and the whole-brain pixel numbers were also calculated. Results: According to our results, extracted CST fiber tract in which the ROI was drawn with fMRI activation areas showed higher distribution than drawing the ROI by users' hands. In addition, the quantitatively measured values represented higher pixel distribution: The counted average pixel numbers were 4553.8 and 1943.3. The average ratios of the ROI areas were 33.87 and 22.52. The average percentages of the individual whole-brain volume numbers were 2.06 and 0.87. Conclusion: Results of this study appear to indicate that use of this method can allow for more objectives and significant for study of the recovery of neural fiber mechanisms and brain rehabilitation.

Photometric Pixel-Analysis of the BCGs in Abell 1139 and Abell 2589

  • Lee, Joon Hyeop;Oh, Sree;Jeong, Hyunjin;Yi, Sukyoung K.;Kyeong, Jaemann;Park, Byeong-Gon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.35.1-35.1
    • /
    • 2016
  • To understand the coevolution of Brightest Cluster Galaxies (BCGs) and their host clusters, we conduct a case study on the BCGs in dynamically young and old clusters, Abell 1139 (A1139) and Abell 2589 (A2589). We analyze the pixel color-magnitude diagrams (pCMDs) using deep g- and r-band images, obtained from the CFHT observations. (1) While the overall shapes of the pCMDs are similar to those of typical early-type galaxies, the A2589-BCG tends to have redder mean pixel color and smaller pixel color deviation at given surface brightness than the A1139-BCG. (2) The mean pixel color distribution as a function of pixel surface brightness indicates that the A2589-BCG formed a larger central body by major dry mergers at an early epoch than the A1139-BCG, while they have grown commonly by subsequent minor mergers. (3) The spatial distributions of the pixels with deviated colors reveal that the A1139-BCG experienced considerable tidal events more recently than the A2589-BCG, whereas the A2589-BCG has an asymmetric compact core possibly resulting from major dry merger at an early epoch. (4) The A2589-BCG shows a very large faint-to-bright pixel number ratio compared to early-type non-BCGs, whereas the ratio for the A1139-BCG is not distinctively large. These results imply that the BCG in the dynamically older cluster (A2589) formed earlier and is relaxed better.

  • PDF

Establishment Moving Picture & Recover of Image Eliminated Overlap Pixel using Picture Resemblance pattern (닮은패턴을 이용한 중첩영상 소거 동영상 화면복원법)

  • Jin, Hyun-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.3
    • /
    • pp.29-35
    • /
    • 2012
  • In this paper, it is presented the method of image recovering which existing is only pixel processing, but suggesting method is concluding image clustering overlap degree after classfying around unit fixel to crowd pixel. Concluding overlap degree threshold value is after identifying pattern pixel and grasping geometry structure of sample pattern and deduction of deciding function. distinguishing feature space is above four dimension is reason of not visual observation of pattern structure. consideration of distribution structure is distance of center of crowd pixel, the number of each crowd pattern pixel and standard deviation. The over threshold value elimate the overlap image and the downward is recovered and established dynamic image. memory storage deduction of 20% and elevation of 15% performance is estimated in recovery of image.

Human Visual System-aware Dimming Method Combining Pixel Compensation and Histogram Specification for TFT-LCDs

  • Jin, Jeong-Chan;Kim, Young-Jin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.12
    • /
    • pp.5998-6016
    • /
    • 2017
  • In thin-film transistor liquid-crystal displays (TFT-LCDs), which are most commonly used in mobile devices, the backlight accounts for about 70% of the power consumption. Therefore, most low-power-related studies focus on realizing power savings through backlight dimming. Image compensation is performed to mitigate the visual distortion caused by the backlight dimming. Therefore, popular techniques include pixel compensation for brightness recovery and contrast enhancement, such as histogram equalization. However, existing pixel compensation techniques often have limitations with respect to blur owing to the pixel saturation phenomenon, or because contrast enhancement cannot adequately satisfy the human visual system (HVS). To overcome these, in this study, we propose a novel dimming technique to achieve both power saving and HVS-awareness by combining the pixel compensation and histogram specifications, which convert the original cumulative density function (CDF) by designing and using the desired CDF of an image. Because the process of obtaining the desired CDF is customized to consider image characteristics, histogram specification is found to achieve better HVS-awareness than histogram equalization. For the experiments, we employ the LIVE image database, and we use the structural similarity (SSIM) index to measure the degree of visual satisfaction. The experimental results show that the proposed technique achieves up to 15.9% increase in the SSIM index compared with existing dimming techniques that use pixel compensation and histogram equalization in the case of the same low-power ratio. Further, the results indicate that it achieves improved HVS-awareness and increased power saving concurrently compared with previous techniques.