• 제목/요약/키워드: Pituitary Adenylate Cyclase-Activating Polypeptide

검색결과 18건 처리시간 0.024초

Pituitary Adenylate Cyclase-activating Polypeptide Inhibits Pacemaker Activity of Colonic Interstitial Cells of Cajal

  • Wu, Mei Jin;Kee, Keun Hong;Na, Jisun;Kim, Seok Won;Bae, Youin;Shin, Dong Hoon;Choi, Seok;Jun, Jae Yeoul;Jeong, Han-Seong;Park, Jong-Seong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제19권5호
    • /
    • pp.435-440
    • /
    • 2015
  • This study aimed to investigate the effect of pituitary adenylate cyclase-activating peptide (PACAP) on the pacemaker activity of interstitial cells of Cajal (ICC) in mouse colon and to identify the underlying mechanisms of PACAP action. Spontaneous pacemaker activity of colonic ICC and the effects of PACAP were studied using electrophysiological recordings. Exogenously applied PACAP induced hyperpolarization of the cell membrane and inhibited pacemaker frequency in a dose-dependent manner (from 0.1 nM to 100 nM). To investigate cyclic AMP (cAMP) involvement in the effects of PACAP on ICC, SQ-22536 (an inhibitor of adenylate cyclase) and cell-permeable 8-bromo-cAMP were used. SQ-22536 decreased the frequency of pacemaker potentials, and cell-permeable 8-bromo-cAMP increased the frequency of pacemaker potentials. The effects of SQ-22536 on pacemaker potential frequency and membrane hyperpolarization were rescued by co-treatment with glibenclamide (an ATP-sensitive $K^+$ channel blocker). However, neither $N^G$-nitro-L-arginine methyl ester (L-NAME, a competitive inhibitor of NO synthase) nor 1H-[1,2,4]oxadiazolo[4,3-${\alpha}$]quinoxalin-1-one (ODQ, an inhibitor of guanylate cyclase) had any effect on PACAP-induced activity. In conclusion, this study describes the effects of PACAP on ICC in the mouse colon. PACAP inhibited the pacemaker activity of ICC by acting through ATP-sensitive $K^+$ channels. These results provide evidence of a physiological role for PACAP in regulating gastrointestinal (GI) motility through the modulation of ICC activity.

Mechanism of Pituitary Adenylate Cyclase-Activating Polypeptide-Induced Inhibition on Catecholamine Secretion Evoked by Cholinergic Stimulation and Membrane Depolarization in the Rat Adrenal Gland

  • Lim, Dong-Yoon;Kang, Jeong-Won;Kim, Young-Jo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제3권3호
    • /
    • pp.339-350
    • /
    • 1999
  • The present study was attempted to examine the effect of pituitary adenylate cyclase-activating polypeptide (PACAP) on catecholamine (CA) secretion evoked by cholinergic stimulation, membrane depolarization and calcium mobilization from the isolated perfused rat adrenal gland. The perfusion of PACAP (10 nM) into an adrenal vein for 60 min produced a great inhibition in CA secretion evoked by ACh $(5.32{\times}10^{-3}\;M),$ high $K^+\;(5.6{\times}10^{-2}\;M),$ DMPP $(10^{-4}\;M\;for\;2\;min),$ McN-A-343 $(10^{-4}\;M\;for\;2\;min),$ cyclopiazonic acid $(10^{-5}\;M\;for\;4\;min)$ and Bay-K-8644 $(10^{-5}\;M\;for\;4\;min).$ Also, in the presence of neuropeptide (NPY), which is known to be co-localized with norepinephrine in peripheral sympathetic nerves, CA secretory responses evoked by ACh, high potassium, DMPP, McN-A-343, Bay-K-8644 and cyclopiazonic acid were also significantly depressed. However, in adrenal glands preloaded with PACAP (10 nM) under the presence of VIP antagonist $[(Lys^1,\;Pro^{2.5},\;Arg^{3.4},\;Tyr^6)-VIP\;(3\;{\mu}M)]$ for 20 min, CA secretory responses evoked by ACh, high potassium, DMPP, McN-A-343, Bay-K-8644 and cyclopiazonic acid were not altered greatly in comparison to the case of PACAP-treatment only. Taken together, these results suggest that PACAP causes the marked inhibition of CA secretion evoked by stimulation of cholinergic (both nicotinic and muscarinic) receptors as well as by membrane depolarization, indicating that this effect may be mediated by inhibiting influx of extracellular calcium and release in intracellular calcium in the rat adrenomedullary chromaffin cells.

  • PDF

The use of pituitary adenylate cyclase-activating polypeptide in the pre-maturation system improves in vitro developmental competence from small follicles of porcine oocytes

  • Park, Kyu-Mi;Kim, Kyu-Jun;Jin, Minghui;Han, Yongquan;So, Kyoung-Ha;Hyun, Sang-Hwan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제32권12호
    • /
    • pp.1844-1853
    • /
    • 2019
  • Objective: We investigated how pituitary adenylate cyclase-activating polypeptide (PACAP) affects embryonic development during pre-in vitro maturation (pre-IVM) using porcine oocytes isolated from small follicles. Methods: We divided the follicles into the experimental groups by size (SF, small follicles; MF, medium follicles) and treated with and without PACAP and cultured for 18 hours (PreSF[-]PACAP; without PACAP, Pre-SF[+]PACAP; with PACAP) before undergoing IVM. The gene expression related to extracellular matrix formation (amphiregulin, epiregulin, and hyaluronan synthase 2 [HAS2]) and apoptosis (Bcl-2-associated X [BAX], B-cell lymphoma 2, and cysteine-aspartic acid protease 3) was investigated after maturation. The impact on developmental competence was assessed by the cleavage and blastocyst rate and total cell number of blastocysts in embryos generated from parthenogenesis (PA) and in vitro fertilization (IVF). Results: Cleavage rates in the Pre-SF(+)PACAP after PA were significantly higher than SF and Pre-SF(-)PACAP (p<0.05). The cleavage rates between MF and Pre- SF(+)PACAP groups yielded no notable differences after IVF. Pre-SF(+)PACAP displayed the higher rate of blastocyst formation and greater total cell number than SF and Pre-SF(-)PACAP (p<0.05). Cumulus cells showed significant upregulation of HAS2 mRNA in the Pre-SF(+)PACAP compared to the SF (p<0.05). In comparison to other groups, the Pre-SF(+)PACAP group displayed a downregulation in mRNA expression of BAX in matured oocytes (p<0.05). Conclusion: The PACAP treatment during pre-IVM improved the developmental potential of porcine oocytes derived from SF by regulating cumulus expansion and apoptosis of oocytes.

TTF-1 Expression in PACAP-expressing Retinal Ganglion Cells

  • Son, Young June;Park, Jeong Woo;Lee, Byung Ju
    • Molecules and Cells
    • /
    • 제23권2호
    • /
    • pp.215-219
    • /
    • 2007
  • In mammals light input resets the central clock of the suprachiasmatic nucleus by inducing secretion of pituitary adenylate cyclase-activating polypeptide (PACAP) from retinal ganglion cells (RGCs). We previously showed that thyroid transcription factor 1 (TTF-1), a homeodomain-containing transcription factor, specifically regulates PACAP gene expression in the rat hypothalamus. In the present study we examined the expression of TTF-1 in PACAP-synthesizing retinal cells. Fluorescence in situ hybridization (FISH) showed that it is abundantly expressed in RGCs of the superior region of the retina, but in only a small subset of RGCs in the inferior region. Double FISH experiments revealed that TTF-1 is exclusively expressed in PACAP-producing RGCs. These results suggest that TTF-1 plays a regulatory role in PACAP-expressing retinal ganglion cells.

Pituitary Adenylate Cyclase-activating Polypeptide (PACAP) Treatment during Pre-maturation Increases the Maturation of Porcine Oocytes Derived from Small Follicles

  • Park, Kyu-Mi;So, Kyoung-Ha;Hyun, Sang-Hwan
    • 한국수정란이식학회지
    • /
    • 제33권1호
    • /
    • pp.1-11
    • /
    • 2018
  • Cellular cyclic adenosine-3' 5'-monophosphate (cAMP) modulator is known as meiotic inhibitor and can delays spontaneous maturation in IVM experiment. Among many cAMP modulators, the role of Pituitary adenylate cyclase activating polypeptide (PACAP) on IVM isn't known. The purpose of this study is to improve the maturation of oocytes derived from follicles ${\leq}3mm$ in diameter through PACAP as meiotic inhibitor during pre-in vitro maturation (pre-IVM). First, we checked PACAP and its receptors in cumulus cells and, to establish the optimal phase and concentration of PACAP for pre-IVM, we conducted chromatin configuration assessments. As a result, the rate of GV (Germinal Vesicle) according to duration of pre-IVM was significantly decreased 12 h and 18 h after IVM (87.1 and 84.1%, respectively) compared to 0 h (99.4%). When COC was cultured for 18 h, the GV rate in the $1{\mu}M$ of PACAP treatment group (82.1%) was significantly higher than any other PACAP treatment groups (60.5, 64.1, 74.4 and 69.9 %, respectively). So, we divided into four groups as follows; MF (the conventional IVM group, obtained from follicle from 3 to 6 mm in diameter), SF (the conventional IVM group, obtained from follicle ${\leq}3mm$ in diameter), Pre-SF(-)PACAP (IVM group including 18 h pre-IVM without $1{\mu}M$ of PACAP, obtained from follicle ${\leq}3mm$ in diameter) and Pre-SF(+)PACAP (IVM group including 18 h pre-IVM with $1{\mu}M$ of PACAP, obtained from follicle ${\leq}3mm$ in diameter). To examine the effect of PACAP during pre-IVM, we investigated analysis of nuclear maturation, intracellular glutathione (GSH) and reactive oxygen species (ROS) levels. In cumulus cells, PACAP receptors, ADCYAP1R1 and VIPR1 were detected but were not detected in oocytes. After IVM, the Pre-SF(+)PACAP had the highest Metaphase II rate (91.7%) among all groups (P<0.05). The GSH levels in the MF and Pre-SF(+)PACAP were significantly higher than in the other groups (P<0.05) and ROS levels was no significant difference among all groups. In conclusion, these results indicated that even though the oocytes were derived from SF, pre-IVM application of PACAP improved meiotic and cytoplasmic maturation by regulating intracellular oxidative stress.