TTF-1 Expression in PACAP-expressing Retinal Ganglion Cells

  • Son, Young June (Department of Biological Sciences, College of Natural Sciences, University of Ulsan) ;
  • Park, Jeong Woo (Department of Biological Sciences, College of Natural Sciences, University of Ulsan) ;
  • Lee, Byung Ju (Department of Biological Sciences, College of Natural Sciences, University of Ulsan)
  • Received : 2006.12.07
  • Accepted : 2007.01.10
  • Published : 2007.04.30

Abstract

In mammals light input resets the central clock of the suprachiasmatic nucleus by inducing secretion of pituitary adenylate cyclase-activating polypeptide (PACAP) from retinal ganglion cells (RGCs). We previously showed that thyroid transcription factor 1 (TTF-1), a homeodomain-containing transcription factor, specifically regulates PACAP gene expression in the rat hypothalamus. In the present study we examined the expression of TTF-1 in PACAP-synthesizing retinal cells. Fluorescence in situ hybridization (FISH) showed that it is abundantly expressed in RGCs of the superior region of the retina, but in only a small subset of RGCs in the inferior region. Double FISH experiments revealed that TTF-1 is exclusively expressed in PACAP-producing RGCs. These results suggest that TTF-1 plays a regulatory role in PACAP-expressing retinal ganglion cells.

Keywords

Acknowledgement

Supported by : Korea Science and Engineering Foundation (KOSEF)

References

  1. Andrews, N. C. and Faller, D. V. (1991) A rapid micropreparation technique for extraction of DNA-binding proteins from limiting numbers of mammalian cells. Nucleic Acids Res. 19, 2499
  2. Arimura, A., Somogyvari-Vigh, A., Miyata, A., Mizuno, K., Coy, D. H., et al. (1991) Tissue distribution of PACAP as determined by RIA: highly abundant in the rat brain and testis. Endocrinology 129, 2787−2789
  3. Butcher, G. Q., Lee, B., Cheng, H. Y., and Obrietan, K. (2005) Light stimulates MSK1 activation in the suprachiasmatic nucleus via a PACAP-ERK/MAP kinase-dependent mechanism. J. Neurosci. 25, 5305−5313
  4. Civitareale, D., Lonigro, R., Sinclair, A. J., and Di Lauro, R. (1989) A thyroid-specific nuclear protein essential for tissuespecific expression of the thyroglobulin promoter. EMBO J. 8, 2537−2542
  5. Freedman, M. S., Lucas, R. J., Soni, B., von Schantz, M., Munoz, M., et al. (1999) Regulation of mammalian circadian behavior by non-rod, non-cone, ocular photoreceptors. Science 284, 421−422
  6. Fu, Y., Zhong, H., Wang, M. H., Luo, D. G., Liao, H. W., et al. (2005) Intrinsically photosensitive retinal ganglion cells detect light with a vitamin A-based photopigment, melanopsin. Proc. Natl. Acad. Sci. USA 102, 10339−10344
  7. Guazzi, S., Price, M., De Felice, M., Damante, G., Mattei, M. G., et al. (1990) Thyroid nuclear factor 1 (TTF-1) contains a homeodomain and displays a novel DNA binding specificity. EMBO J. 9, 3631−3639
  8. Hannibal, J. (2002) Neurotarnsmitter of the retino-hypothalamic tract. Cell Tissue Res. 309, 73−88
  9. Hannibal, J., Vrang, N., Card, J. P., and Fahrenkrug, J. (2001) Light dependent induction of c-fos during subjective day and night in PACAP containing retinal ganglion cells of the retino-hypothalamic tract. J. Biol. Rhythms 16, 457−470
  10. Hannibal, J., Hindersson, P., Knudsen, S. M., Georg, B., and Fahrenkrug, J. (2002) The photopigment melanopsin is exclusively present in pituitary adenylate cyclase-activating polypeptide-containing retinal ganglion cells of the retinohypothalamic tract. J. Neurosci. 22, RC191;1−7
  11. Harrington, M. E., Hoque, S., Hall, A., Golombek, D., and Biello, S. (1999) Pituitary adenylate cyclase activating peptide phase shifts circadian rhythms in a manner similar to light. J. Neurosci. 19, 6637−6642
  12. Hashimoto, H., Ishihara, T., Shigemoto, R., Mori, K., and Nagata, S. (1993) Molecular cloning and tissue distribution of a receptor for pituitary adenylate cyclase-activating polypeptide. Neuron 11, 333−342
  13. Kim, M. S., Hur, M. K., Son, Y. J., Park, J. I., Chun, S. Y., et al. (2002) Regulation of pituitary adenylate cyclase-activating polypeptide gene transcription by TTF-1, a homeodomaincontaining transcription factor. J. Biol. Chem. 277, 36863− 36871
  14. Koh, P. O., Kim, Y. S., Cheon, E. W., Kang, S. S., Cho, G. J., et al. (2002) Expression of streoidogenic acute regulatory protein mRNA in rat placenta during mid-late pregnancy. Mol. Cells 14, 355−360
  15. Koh, P. O., Noh, H. S., Kim, Y. S., Cheon, E. W., Kim, H. J., et al. (2005) Cellular localization of pituitary adenylate cyclase- activating polypeptide in the rat testis. Mol. Cells 15, 271−276
  16. Nakamura, K., Kimura, S., Yamazaki, M., Kawaguchi, A., Inoue, K., et al. (2001) Immunohistochemical analyses of thyroid-specific enhancer-binding protein in the fetal and adult rat hypothalami and pituitary glands. Dev. Brain. Res. 130, 159−166
  17. Lazzaro, D., Price, M., Felice, M. D., and Di Lauro, R. (1991) The transcription factor TTF-1 is expressed at the onset of thyroid and lung morphogenesis and in restricted regions of the fetal brain. Development 113, 1093−1104
  18. Lee, B. J., Cho, G. J., Norgren, Jr R. B., Junier, M. P., Hill, D. F., et al. (2001) TTF-1, a homeodomain gene required for diencephalic morphogenesis, is postnatally expressed in the neuroendocrine brain in a developmentally regulated and cell-specific fashion. Mol. Cel. Neurosci. 17, 107−126
  19. Nielsen, H. S., Hannibal, J., Knudsen, S. M., and Fahrenkrug, J. (2001) Pituitary adenylate cyclase-activating polypeptide induces period1 and period2 gene expression in the rat suprachiasmatic nucleus during late night. Neuroscience 103, 433−441
  20. Panda, S., Provencio, I., Tu, D. C., Pires, S. S., Rollag, M. D., et al. (2003) Melanopsin is required for non-image-forming photic responses in blind mice. Science 301, 525−527
  21. Panda, S., Nayak, S. K., Campo, B., Walker, J. R., Hogenesch, J. B., et al. (2005) Illumination of the melanopsin signaling pathway. Science 307, 600−604
  22. Qiu, X., Kumbalasiri, T., Carlson, S. M., Wong, K. Y., Krishna, V., et al. (2005) Induction of photosensitivity by heterologous expression of melanopsin. Nature 433, 745−749 https://doi.org/10.1038/nature03387
  23. Shioda, S., Legradi, G., Leung, W. C., Nakajo, S., Nakaya, K., et al. (1994) Localization of pituitary adenylate cyclaseactivating polypeptide and its messenger ribonucleic acid in the rat testis by light and electron microscopic immunocytochemistry and in situ hybridization. Endocrinology 135, 818− 825
  24. Shivers, B. D., Gorcs, T. J., Gottschall, P. E., and Arimura, A. (1991) Two high affinity binding site for pituitary adenylate cyclase-activating polypeptide have different tissue distributions. Endocrinology 128, 3055−3065
  25. Son, Y. J., Hur, M. K., Ryu, B. J., Park, S. K., Damante, G., et al. (2003) TTF-1, a homeodomain-containing transcription factor, participates in the control of body fluid homeostasis by regulating angiotensinogen gene transcription in the rat subfornical organ. J. Biol. Chem. 278, 27043−27052
  26. Suzuki, K., Lavaroni, S., Mori, A., Okajima, F., Kimura, S., et al. (1998a) Thyroid transcription factor 1 is calcium modulated and coordinately regulates genes involved in calcium homeostasis in C cells. Mol. Cell. Biol. 18, 7410−7422
  27. Suzuki, K., Kobayashi, Y., Katoh, R., Kohn, L. D., and Kawaoi, A. (1998b) Identification of thyroid transcription factor-1 in C cells and parathyroid cells. Endocrinology 139, 3014−3017