• Title/Summary/Keyword: Pituitaries

Search Result 13, Processing Time 0.017 seconds

Molecular Cloning and Alternative Splicing of Growth Hormone Transcripts in Greenling, Hexagrammos otakii (쥐노래미 (Hexagrammos otakii) 성장호르몬 cDNA유전자의 염기서열 변이 및 발현 특성)

  • Nam Yoon Kwon;Kim Dong Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.35 no.6
    • /
    • pp.676-681
    • /
    • 2002
  • Different types of transcripts encoding growth hormone (GH) were identified from cDNA libraries constructed with pituitaries of a marine fish species, greenling (Hexagrammos otakii). GH-homologous cDNA clones were isolated using the high-density filter hybridization and the expressed sequence tag techniques. Of 39 full-length positive cDNA clones, 31 clones ($79\%$) displayed an identical sequence, however, remaining 8 clones exhibited several polymorphisms in their sequences including (1) the length and sequence variability in the 5' upstream region, (2) insertional sequences in open reading frame, and (3) deletion and/or single nucleotide polymorphism in the untranslated 3' region. Based on RT-PCT and RNA dot blot analyses, these transcripts were proven to be expressed in a pituitary-specific manner.

Regulation of $LH{\beta}$ subunit mRNA by Ovarian Steroid in Ovariectomized Rats (난소제거된 흰쥐에서 난소호르몬에 의한 $LH{\beta}$ subunit의 유전자 발현조절)

  • Kim, Chang-Mee;Park, Deok-Bae;Ryu, Kyung-Za
    • The Korean Journal of Pharmacology
    • /
    • v.29 no.2
    • /
    • pp.225-235
    • /
    • 1993
  • Pituitary LH release has been known to be regulated by the hypothalamic gonadotropin releasing hormone (GnRH) and the gonadal steroid hormones. In addition, neurotransmitters and neuropeptides are actively involved in the control of LH secretion. The alteration in LH release might reflect changes in biosynthesis and/or posttranslational processing of LH. However, little is known about the mechanism by which biosynthesis of LH subunits is regulated, especially at the level of transcription. In order to investigate if ovarian steroid hormones regulate the LH subunit gene expression, ${\alpha}\;and\;LH{\beta}$ steady state mRNA levels were determined in anterior pituitaries of ovariectomized rats. Serum LH concentrations and pituitary LH concentrations were increased markedly with time after ovariectomy. ${\alpha}\;and\;LH{\beta}$ subunit mRNA levels after ovariectomy were increased in a parallel manner with serum LH concentrations and pituitary LH contents, the rise in $LH{\beta}$ subunit mRNA levels being more prominent than the rise in ${\alpha}\;subunit$ mRNA. ${\alpha}\;and\;LH{\beta}$ subunit mRNA levels in ovariectomized rats were negatively regulated by the continuous treatment of ovarian steriod hormones for $1{\sim}4\;days$ and $LH{\beta}\;subunit$ mRNA seemed to be more sensitive to negative feedback of estradiol than progesterone. Treatment of estrogen antagonist, LY117018 or progesterone antagonist, RU486 significantly restroed LH subunit mRNA levels as well as LH release which were suppressed by estradiol or progesterone treatment. These results suggest that ovarian steroids negatively regulate the LH synthesis at the pretranslational level by modulating the steady state levels of ${\alpha}\;and\;LH{\beta}\;subunit$ mRNA and $LH{\beta}\;subunit$ mRNA seemed to be more sensitive to negative feedback action of estradiol than progesterone.

  • PDF

Effect of 6-Hydroxydopamine (6-OHDA) on the Expression of Hypothalamus-Pituitary Axis Hormone Genes in Male Rats (수컷 흰쥐의 시상하부-뇌하수체 축 호르몬 유전자 발현에 미치는 6-Hydroxydopamine(6-OHDA)의 영향)

  • Heo, Hyun-Jin;Ahn, Ryun-Sup;Lee, Sung-Ho
    • Development and Reproduction
    • /
    • v.13 no.4
    • /
    • pp.257-264
    • /
    • 2009
  • A neurotoxin, 6-hydroxydopamine (6-OHDA) has been widely used to create animal model for Parkinson's disease (PD) due to its specific toxicity against dopaminergic (DA) neurons. Since DA signals modulate a broad spectrum of CNS physiology, one can expect profound alterations in neuroendocrine activities of both PD patients and 6-OHDA treated animals. Limited applications of 6-OHDA injection model, however, have been made on the studies of hypothalamuspituitary neuroendocrine circuits. The present study was performed to examine whether blockade of brain catecholamine (CA) biosynthesis with 6-OHDA can make any alteration in the transcriptional activities of hypothalamus-pituitary hormone genes in adult male rats. Three-month-old male rats (SD strain) were received 6-OHDA ($200{\mu}g$ in $10{\mu}\ell$ of saline/animal) by intracerebroventricular (icv) injection, and sacrificed after two weeks. To determine the mRNA levels of hypothalamuspituitary hormone genes, total RNAs were extracted and applied to the semi-quantitative RT-PCRs. The mRNA levels of tyrosine hydroxylase (TH), the rate-limiting enzyme for the catecholamine biosynthesis, were significantly lower than those from the control group (control:6-OHDA=1:0.72${\pm}$0.02AU, p<0.001), confirming the efficacy of 6-OHDA injection. The mRNA levels of gonadotropin-releasing hormone (GnRH) and corticotropin releasing hormone (CRH) in the hypothalami from 6-OHDA group were significantly lower than those from the control group (GnRH, control:6-OHDA=1:0.39${\pm}$0.03AU, p<0.001; CRH, control:6-OHDA=1:0.76${\pm}$0.07AU, p<0.01). There were significant decreases in the mRNA levels of common alpha subunit of glycoprotein homones (Cg$\alpha$), LH beta subunit (LH-$\beta$), and FSH beta subunit (FSH-$\beta$) in pituitaries from 6-OHDA group compared to control values (Cg$\alpha$, control:6-OHDA=1:0.81${\pm}$0.02AU, p<0.001; LH-$\beta$, control:6-OHDA=1:0.68${\pm}$0.04AU, p<0.001; FSH-$\beta$, control:6-OHDA=1:0.84${\pm}$0.05AU, p<0.001). Similarly, the level of adrenocorticotrophic hormone (ACTH) transcripts from 6-OHDA group was significantly lower than that from the control group (control: 6-OHDA=1:0.86${\pm}$0.04AU, p<0.01). The present study demonstrated that centrally injected DA neurotoxin could downregulate the transcriptional activities of the two hypothalamus-pituitary neuroendocrine circuits, i.e., GnRH-gonadotropins and CRH-ACTH systems. These results suggested that hypothalamic CA input might affect on the activities of gonad and adrenal through modulation of hypothalamus-pituitary function, providing plausible explanation for frequent occurrence of sexual dysfunction and poor stress-response in PD patients.

  • PDF