• Title/Summary/Keyword: Pitting test

Search Result 163, Processing Time 0.026 seconds

Numerical Cavitation Intensity on a Hydrofoil for 3D Homogeneous Unsteady Viscous Flows

  • Leclercq, Christophe;Archer, Antoine;Fortes-Patella, Regiane;Cerru, Fabien
    • International Journal of Fluid Machinery and Systems
    • /
    • v.10 no.3
    • /
    • pp.254-263
    • /
    • 2017
  • The cavitation erosion remains an industrial issue for many applications. This paper deals with the cavitation intensity, which can be described as the fluid mechanical loading leading to cavitation damage. The estimation of this quantity is a challenging problem both in terms of modeling the cavitating flow and predicting the erosion due to cavitation. For this purpose, a numerical methodology was proposed to estimate cavitation intensity from 3D unsteady cavitating flow simulations. CFD calculations were carried out using Code_Saturne, which enables U-RANS equations resolution for a homogeneous fluid mixture using the Merkle's model, coupled to a $k-{\varepsilon}$ turbulence model with the Reboud's correction. A post-process cavitation intensity prediction model was developed based on pressure and void fraction derivatives. This model is applied on a flow around a hydrofoil using different physical (inlet velocities) and numerical (meshes and time steps) parameters. The article presents the cavitation intensity model as well as the comparison of this model with experimental results. The numerical predictions of cavitation damage are in good agreement with experimental results obtained by pitting test.

Effect of Compliant Structure in the Accelerated Heart Valve Fatigue Tester on the Surface Pitting of the Disk (기계식 인공판막의 표면 부식에 영향을 미치는 가속내구시험기의 컴플라이언스 구조에 관한 연구)

  • Kim, Dong-Uk;Lee, Hwan-Seong;Kim, Nam-Gyun
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.3
    • /
    • pp.285-290
    • /
    • 1998
  • There are various reports on the fracture of mechanical heart valves implanted in human or animal, and they are pointed out that problems are induced by an erosion of disk surface, due to a cavitation effect. We have been investigating this mechanism using accelerated fatigue tester, and it was found that erosion was enhanced by a compliance effect in the test circuit. In this study, effects of compliance value and location on erosion were discussed, while disk closing velocity was measured by a high speed video camera. It was clarified that faster closing velocity was resulting in a enhancement of erosion on the disk surface.

  • PDF

Study of Corrosion and Post Analysis for the Separator Channel of MCFC Stack after Cell Operation for 1200 hours (용융탄산염연료전지(MCFC) 스택의 1200시간 운전 후 분리판 채널부 표면 열화 분석 및 연구)

  • Cho, Kye-Hyun
    • Journal of the Korean institute of surface engineering
    • /
    • v.40 no.3
    • /
    • pp.149-158
    • /
    • 2007
  • Of all components of MCFC(molten carbonate fuel cell), corrosion of separator is one of the most decisive factor for commercializing of MCFC. In order to provide better understanding of corrosion behavior and morphology for gas channel of separator plate, post-analysis after cell operation for 1200 hours at $650^{\circ}C$ was performed by optical microscope, SEM and EPMA. Intergranular corrosion was observed on gas channel of separator plate. Corrosion product layer was identified as Fe-oxide, Cr-oxide and Ni-oxide by EPMA, and oxide thickness was measured with a $60{\mu}m-150{\mu}m$. Also, gas channel of separator was damaged by severe intergrannular attack with post analysis in consistent with immersion test. Moreover, pitting on the channel plate was observed with a depth of $18{\sim}24{\mu}m$. The results of immersion method are well agreement with post analysis measurements.

Wash Interval Optimization to Prevent Atmospheric Corrosion of Korean Aircrafts Made of Aluminum Alloys (알루미늄 합금 대기부식 예방을 위한 대한민국 공군 항공기 세척주기 최적화 연구)

  • Park, Won Dong;Gook, Phil Jun;Cho, Younho;Bahn, Chi Bum
    • Corrosion Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.189-197
    • /
    • 2016
  • It is a common practice to conduct periodic washes at designated intervals in order to prevent the atmospheric corrosion of aircraft. The wash interval depends on the atmospheric conditions, but the wash intervals set by the U.S. Air Force were widely adopted in Korea without detailed knowledge of the background data. Therefore, it is necessary to determine our own wash intervals representing the atmospheric and geographical conditions in Korea. This study analyzed previous wash interval algorithms and atmospheric data in Korea. New wash intervals are then proposed based on the corrosion rate equation in ISO-9223:2012. Atmospheric corrosion testing was conducted using 7075 and 1050 aluminum alloy specimens to verify the accuracy of the corrosion rate equation in ISO-9223:2012. Test results showed a reasonable agreement with the corrosion rates predicted by the equation.

Hardness and Corrosion Resistance of Surface Composites Fabricated with Fe-based Metamorphic Powders by High-energy Electron Beam Irradiation

  • Nam, Dukhyun;Lee, Kyuhong;Lee, Sunghak;Young, Kyoo
    • Corrosion Science and Technology
    • /
    • v.7 no.6
    • /
    • pp.301-306
    • /
    • 2008
  • Surface composite layers of 1.9~2.9 mm in thickness were fabricated by depositing metamorphic powders on a carbon steel substrate and by irradiating with a high-energy electron beam. In the surface composite layers, 48~64 vol.% of $Cr_{2}B$ or $Cr_{1.65}Fe_{0.35}B_{0.96}$ borides were densely precipitated in the austenite or martensite matrix. These hard borides improved the hardness of the surface composite layer. According to the otentiodynamic polarization test results of the surface composites, coatings, STS304 stainless steel, and carbon steel substrate, the corrosion potential of the surface composite fabricated with 'C+' powders was highest, and its corrosion current density was lowest, while its pitting potential was similar to that of the STS304 steel. This indicated that the overall corrosion resistance of the surface composite fabricated with 'C+' powders was the best among the tested materials. Austenite and martensite phases of the surface composites and coatings was selectively corroded, while borides were retained inside pits. In the coating fabricated with 'C+' powders, the localized corrosion additionally occurred along splat boundaries, and thus the corrosion resistance of the coating was worse than that of the surface composite.

Effect of Alumina Content on the Hot Corrosion of SiC by NaCl and Na2SO4 (NaCl과 Na$_2$SO$_4$에 의한 SiC 고온 부식에 미치는 Alumina 첨가량의 영향)

  • 이수영;고재웅;김해두
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.8
    • /
    • pp.626-634
    • /
    • 1991
  • The specimens for the corrosion test were made by hot-pressing of SiC power with 2 wt% Nl2O3 and 10wt% Al2O3 additions at 200$0^{\circ}C$ and 205$0^{\circ}C$. The specimens were corroded in 37 mole% NaCl and 63 mole% Na2SO4 salt mixture at 100$0^{\circ}C$ up to 60 min. SiO2 layer was formed on SiC and then this oxide layer was dissolved by Na2O ion in the salt mixture. The rate of corrosion of the specimen containing 10 wt% Al2O3 was slower than that of the specimen containing 2 wt% Al2O3. This is due to the presence of continuous grain boundary phase in the specimen containing 10 wt% Al2O3. The oxidation of SiC produced gas bubbles at the SiC-SiO2 interface. The rate of corrosion follows a linear rate law up to 50 min. and then was accelerated. This acceleration is due to the disruption oxide layer by the gas evolution at SiC-SiO2 interface. Pitting corrosion has found at open pores and grain boundaries.

  • PDF

Corrosion Characteristics of Ti, Ti/Cr Coated and Plasma-Nitrided Surface for Stainless Steel Containing Ti (Ti가 함유된 스테인리스강에서 Ti, Ti/Cr 코팅표면과 플라즈마질화표면의 부식특성)

  • 최한철;이승훈;김관휴
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.1
    • /
    • pp.89-98
    • /
    • 2003
  • Corrosion characteristics of Ti, Ti/Cr coated and plasma-nitrided surface for stainless steel containing Ti have been studied. Stainless steels containing 0.09-0.92wt% Ti were fabricated by using vacuum furnace and solutionized for 1hr at $1050^{\circ}C$. Ti and Cr coatings were done on solutionized stainless steel surface by EB-PVD. The Ti coated specimen were coated by Cr and were nitrided by plasma at $450^{\circ}C$ for 5hr Microstructure and phase analysis were performed using SEM, OM and EDX. Corrosion behavior of the coated specimen was investigated by electrochemical test. The coated surface was of fine columnar structure. The Ti/Cr coated surface was denser than the Ti coated and the Ti coated-nitrided surfaces. The corrosion and pitting potential increased in proportion to the Ti content, coating temperature, coating thickness and formation of stable oxide film. The current density in active and passive region decreased in the case of Ti/Cr coated sample and Ti coated-nitrided samples. Especially the plasma nitrided specimen after Ti coating have a good corrosion resistance compared with the Ti coated specimen. The number and size of pits decreased as Ti content of matrix increased.

Statistical Approach for Corrosion Prediction Under Fuzzy Soil Environment

  • Kim, Mincheol;Inakazu, Toyono;Koizumi, Akira;Koo, Jayong
    • Environmental Engineering Research
    • /
    • v.18 no.1
    • /
    • pp.37-43
    • /
    • 2013
  • Water distribution pipes installed underground have potential risks of pipe failure and burst. After years of use, pipe walls tend to be corroded due to aggressive soil environments where they are located. The present study aims to assess the degree of external corrosion of a distribution pipe network. In situ data obtained through test pit excavation and direct sampling are carefully collated and assessed. A statistical approach is useful to predict severity of pipe corrosion at present and in future. First, criteria functions defined by discriminant function analysis are formulated to judge whether the pipes are seriously corroded. Data utilized in the analyses are those related to soil property, i.e., soil resistivity, pH, water content, and chloride ion. Secondly, corrosion factors that significantly affect pipe wall pitting (vertical) and spread (horizontal) on the pipe surface are identified with a view to quantifying a degree of the pipe corrosion. Finally, a most reliable model represented in the form of a multiple regression equation is developed for this purpose. From these analyses, it can be concluded that our proposed model is effective to predict the severity and rate of pipe corrosion utilizing selected factors that reflect the fuzzy soil environment.

Wear Behavior of Die Steel in Molten Aluminum Alloy (용융 알루미늄 합금에 의한 다이캐스팅용 금형강의 용손거동)

  • Bae, Sang-Ho;Kang, Bok-Hyun;Kim, Ki-Young;Kim, Do-Hyang;Choi, Gun;Choi, Bae-Ho
    • Journal of Korea Foundry Society
    • /
    • v.28 no.3
    • /
    • pp.119-123
    • /
    • 2008
  • Wear test on two die steels for aluminum die casting was carried out by dipping and rotating the specimens into the molten aluminum maintained $680^{\circ}C{\sim}780^{\circ}C$. The rotating speed of the specimen was $4.5rpm{\sim}20.0rpm$. Diffusion layer was formed between the die steel and molten aluminum, and became thicker with dipping time. Wear rate was not proportional with the thickness of the diffusion layer, but was closely related to the density of the diffusion layer. Wear rate was little affected by the kind of die steel and by the microstructure such as martensite, tempered martensite, and pearlite. Specimen with nitrided surface showed good wear resistance, and its wear rate was decreased with increase in the thickness of nitrided layer. While whole surface was worn in heat treated specimens, wear of nitrided specimens was proceeded by pitting partially.

Microstructural and Mechanical Property Evaluation of the Ferritic-Martensitic Steel under Liquid Sodium Environment (액체소듐 환경에서 Ferritic-Martensitic강의 미세조직 및 기계적 성질 평가)

  • Kim, Jun Hwan;Kim, Jong Man;Kim, Sung Ho;Lee, Chan Bock
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.10
    • /
    • pp.914-921
    • /
    • 2010
  • Studies were carried out to assess the microstructural and mechanical properties of ferriticmartensitic steel under a flowing sodium environment. HT9 (12Cr-MoVW) and Gr.92 (9Cr-MoVNbW) steel were exposed to liquid sodium at $650^{\circ}C$ containing dissolved oxygen of 20 ppm for 2333 hours and evaluations of the microstructure as well as the mechanical properties of the microhardness and nanoindentation were carried out. The result showed that both HT9 and Gr.92 exhibited macroscopic weight loss caused by general corrosion as well as localized types such as intergranular corrosion and pitting. Decarburization at the steel surface took place as the test proceeded. As the Cr content increased, dissolution and decarburization were suppressed. Assessment of the actual cladding geometry revealed that an aging process rather than decarburization governed the mechanical properties, which resulted in a decrease of the microhardness and yield stress.