• 제목/요약/키워드: Pitting resistance equivalent index

검색결과 2건 처리시간 0.02초

침지시험법 및 전기화학적 분극법에 의한 2205 이상 스테인리스강의 임계공식온도 측정 비교 (Critical Pitting Temperature of 2205 Duplex Stainless Steels Using Immersion and Electrochemical Polarization Test Methods)

  • 신재호;이재봉
    • 한국표면공학회지
    • /
    • 제39권1호
    • /
    • pp.18-24
    • /
    • 2006
  • Although stainless steels have the excellent corrosion resistance by passive film, they are susceptible to pitting corrosion in the environment containing halogen elements such as chloride ions. The resistance to pitting corrosion can be evaluated by measuring the critical pitting temperature (CPT). CPT values can be obtained using immersion, potentiodynamic and potentiostatic polarization test methods. Results on duplex 2205 stainless steels showed that CPT values were measured as $50^{\circ}C,\;55^{\circ}C\;and\;61^{\circ}C$, respectively for immersion, potentiodynamic and potentiostatic polarization test methods, depending upon the different test methods, even though the difference between CPT values are not much.

해수 환경에서 듀플렉스 스테인리스강의 전기화학적 거동 및 캐비테이션 특성 (Electrochemical and Cavitation-Erosion Characteristics of Duplex Stainless Steels in Seawater Environment)

  • 허호성;김성종
    • Corrosion Science and Technology
    • /
    • 제20권6호
    • /
    • pp.466-474
    • /
    • 2021
  • A wet type scrubber for merchant vessel uses super austenitic stainless steels with pitting resistance equivalent number (PREN) of 40 or higher for operation in a harsh corrosive environment. However, it is expensive due to a high nickel content. Thus, electrochemical behavior and cavitation erosion characteristics of UNS S32750 as an alternative material were investigated. Microstructure analysis revealed fractions of ferritic and austenitic phases of 48% and 52%, respectively, confirming the existence of ferritic matrix and austenitic island. Potentiodynamic polarization test revealed damage at the interface of the two phases because of galvanic corrosion due to different chemical compositions of ferritic and austenitic phases. After a cavitation test, a compressive residual stress was formed on the material surface due to impact pressure of cavity. Surface hardness was improved by water cavitation peening effect. Hardness value was the highest at 30 ㎛ amplitude. Scanning electron microscopy revealed wave patterns due to plastic deformation caused by impact pressure of the cavity. The depth of surface damage increased with amplitude. Cavitation test revealed larger damage caused by erosion in the ferritic phase due to brittle fracture derived from different strain rate sensitivity index of FCC and BCC structures.