• Title/Summary/Keyword: Pitching stability

Search Result 54, Processing Time 0.017 seconds

Effects of Wing Twist on Longitudinal Stability of BWB UCAV (날개의 비틀림이 동체-날개 융합익형 무인전투기의 종안정성에 미치는 영향에 대한 연구)

  • Ban, Seokhyun;Lee, Jihyeong;Kim, Sangwook;Cho, Jinsoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.1
    • /
    • pp.1-9
    • /
    • 2018
  • Lambda wing type Unmanned Combat Aerial Vehicle(UCAV) which adopts Blended Wing Body(BWB) has relatively less drag and more stealth performance than conventional aircraft. However, Pitching moment is rapidly increased at a specific angle of attack affected by leading edge vortex due to leading edge sweep angle. Wind tunnel testing and numerical analysis were carried out with UCAV 1303 configuration on condition of 50 m/s of flow velocity, $-4^{\circ}{\sim}28^{\circ}$ of the range of angle-of-attack. The effect of wing twist for longitudinal stability at the various angles of attack was verified in this study. When negative twist is applied on the wing, Pitch-break was onset at higher angle of attack due to delayed flow separation on outboard of the wing. On the other hand, pitch-break was onset at lower angle of attack and lift-to-drag ratio was increased when positive twist is applied on the wing.

Unguided Rocket Trajectory Analysis under Rotor Wake and External Wind (로터 후류와 외풍에 따른 무유도 로켓 궤적 변화 해석)

  • Kim, Hyeongseok;Chae, Sanghyun;Yee, Kwanjung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.1
    • /
    • pp.41-51
    • /
    • 2018
  • Downwash from helicopter rotor blades and external winds from various maneuvering make an unguided rocket change its trajectory and range. For the prediction of the trajectory and range, it is essential to consider the downwash effect. In this study, an algorithm was developed to calculate 6-Degree-Of-Freedom(6 DOF) forces and moments exerting on the rocket, and total flight trajectory of a 2.75-inch unguided rocket in a helicopter downwash flow field. Using Actuator Disk Model(ADM) analysis result, the algorithm could analyze the entire trajectory in various initial launch condition such as launch angle, launch velocity, and external wind. The algorithm that considered the interference between a fuselage and external winds could predict the trajectory change more precisely than inflow model analysis. Using the developed algorithm, the attitude and trajectory change mechanism by the downwash effect were investigated analyzing the effective angle of attack change and characteristics of pitching stability of the unguided rocket. Also, the trajectory and range changes were analyzed by considering the downwash effect with external winds. As a result, it was concluded that the key factors of the rocket range change were downwash area and magnitude which effect on the rocket, and the secondary factors were the dynamic pressure of the rocket and the interference between a fuselage and external winds. In tailwind case which was much influential on the range characteristics than other wind cases, the range of the rocket rose as increasing the tailwind velocity. However, there was a limit that the range of the rocket did not increase more than the specific tailwind velocity.

Improved Design of Hydraulic Circuit of Front-end Loader for Bump Shock Reduction of an Agricultural Tractor (농업용 트랙터의 프론트 로더 충격 저감을 위한 유압 회로의 설계 개선)

  • Cho, Bong Jin;Ahn, Seong Wook;Lee, Chang Joo;Yoon, Young Hwan;Lee, Soo Seong;Kim, Hak Jin
    • Journal of Drive and Control
    • /
    • v.13 no.2
    • /
    • pp.10-18
    • /
    • 2016
  • A front-end loader (FEL) mounted on an agricultural tractor is one of the most commonly used implements to mechanize routine agricultural tasks. When the FEL is used with a loaded bucket, careful operation is required to maintain safety and avoid spillage when the tractor passes a bump because a change in the gravity center of the tractor due to varied loadings can affect the stability of the tractor. Use of a boom suspension system consisting of accumulators and orifice dampers can be instrumental in reducing pitching vibrations while increasing the handling performance of the FEL-mounted tractor. The objective of this research was to reduce bump shocks by adding an orifice and a flow control valve to the original hydraulic circuit composed solely of accumulators. A simulation study was performed using the SimulationX program to investigate the effects of an accumulator and an orifice-throttle damper on bump shocks. Results showed that the peak pressure on a boom cylinder and the vertical acceleration of a bucket were significantly affected by use of both an accumulator and an orifice damper. In a field test conducted with a 75-kW tractor, the peak pressure of the boom cylinder, and the root mean square (RMS) vertical acceleration of the bucket and seat were reduced by on average, 23.0, 42.2, and 44.9% respectively, as compared to those measured with the original accumulator system, showing that an improved design for the accumulator hydraulic circuit can reduce bump shocks. Further studies are needed to design a tractor suspension system that includes the effects of cabin suspension and tires as well as dynamic analysis.

Study of the Incremental Dynamic Inversion Control to Prevent the Over-G in the Transonic Flight Region (천음속 비행영역에서 하중제한 초과 방지를 위한 증분형 동적 모델역변환 제어 연구)

  • Jin, Tae-beom;Kim, Chong-sup;Koh, Gi-Oak;Kim, Byoung-Soo
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.5
    • /
    • pp.33-42
    • /
    • 2021
  • Modern aircraft fighters improve the maneuverability and performance with the RSS (Relaxed Static Stability) concept and therefore these aircrafts are susceptible to abrupt pitch-up in the transonic and moderate Angle-of-Attack (AoA) flight region where the shock wave is formed and the mean aerodynamic center is moved forward during deceleration. Also, the modeling of the aircraft flying in this flight region is very difficult due to complex flow filed and unpredictable dynamic characteristics and the model-based control design technique does not fully cover this problem. In this paper, we analyzed the performance of the TPMC (Transonic Pitching Moment Compensation) control based on the model-based IDI (Incremental Dynamic Inversion) and the Hybrid IDI based on the model and sensor based IDI during the SDT (Slow Down Turn) in transonic region. As the result, the Hybrid IDI had quicker response and the same maximum g suppression performance and provided the predictable flying qualities compared to the TPMC control. The Hybrid IDI improved the performance of the Over-G protection controller in the transonic and moderate AoA region