• Title/Summary/Keyword: Pitch distance

Search Result 169, Processing Time 0.029 seconds

Optimization of Sheet Arrangement of Membrane Panel in Korean LNG Cargo Containment System (한국형 LNG 화물창 멤브레인의 Sheet 배치 최적화)

  • Kim, Yeong-Su;Ham, Seung-Ho;Park, Kwang-Phil
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.2
    • /
    • pp.109-117
    • /
    • 2022
  • Membrane panels are installed in LNG cargo-hold in order to endure extremely low temperature LNG. Although there are several types of membranes around the world, Korean LNG cargo containment system is developing to accomplish technology independence from the other countries. The membrane panel of Korean LNG cargo containment system is composed of corrugation and flat sheets which are arranged asymmetrically. It is very important to reduce the number of the type of corrugation sheet because a mold is required as much as the type of the corrugation sheet. Therefore, we proposed an optimization method to minimize the type of the corrugation sheet. For this method, the number of pitches, which is the distance between the centers of two corrugation sheets should be minimized. We also developed optimized arrangement procedure of the flats simultaneously. Finally, the developed optimization program is applied to 174K LNG cargo hold, and the minimum pitch size is found.

Numerical Analysis on Dynamic Behavior Characteristics of an Amphibious Assault Vehicle during Water Entry (상륙돌격장갑차의 진수 중 동적 거동 수치 해석)

  • Youngmin Heo;Taehyung Kim
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.2
    • /
    • pp.159-170
    • /
    • 2023
  • In the present study, the dynamic behavior characteristics of an amphibious assault vehicle during water entry were analyzed using STAR-CCM+, a commercial computational fluid dynamics(CFD) code. All computations were performed using an overset mesh system and a RANS based flow-solver coupled with dynamic fluid-body interaction(DFBI) solver for simulating three degrees of freedom motion. For numerical validation of the solver, a water entry simulation of inclined circular cylinder was conducted and it was compared between an existing experiment data and CFD results. The pitch angle variation and the trajectory of the circular cylinder during water entry shows good agreement with previous experimental and numerical studies. For the water entry simulations of the amphibious assault vehicle, the analysis of dynamic behaviors of the amphibious assault vehicle with different slope angles, submerged depths and initial velocities were conducted. It is confirmed that the steep slope angle increases the submerged volume of the amphibious assault vehicle, so the buoyancy acting on the vehicle is increased and the moved distance for the re-flotation is decreased. It is also revealed that the submerged volume is increased, bow-up phenomenon occur earlier.

Electromyographic Activities of Lower Leg Muscles During Static Balance Control in Normal Adults (정상성인에서 정적 균형 제어 시 다양한 조건에 따른 하퇴 근육 활성도의 특성)

  • Woo, Young-Keun;Park, Ji-Won;Choi, Jong-Duk;Hwang, Ji-Hye;Kim, Yun-Hee
    • Physical Therapy Korea
    • /
    • v.11 no.2
    • /
    • pp.35-45
    • /
    • 2004
  • The purpose of this study was to investigate the correlation and characteristics between electromyographic (EMG) activities of lower leg muscles and the posturographic assessment of static balance control in normal adults. Twenty-four young, healthy adults(12 males, 12 females) participated in the study. Center of pressure (COP) parameters were obtained using force platform as total path distance, total sway area, X mean frequency and Y mean frequency for 20 seconds in the following conditions: (1) comfortable standing with eyes opened or closed, (2) uncomfortable standing (feet together) with eyes opened or closed, (3) virtual moving surround delivered using Head mount display (HMD) with four different moving patterns. The virtual moving patterns consisted of close-far, superior-inferior tilting (pitch), right-left tilting (roll), and horizontal rotation (yaw) movements. Surface electromyographic activites were recorded on the tibialis anterior, peroneus longus, medial and lateral heads of gastrocnemius muscles under each condition. Correlation between the posturographic measures and EMG activities were evaluated. Total path distance and total sway area of COP were significantly increased during uncomfortable standing. EMG activity of tibialis anterior was significantly more during uncomfortable standing and virtual moving surround stimulation than during comfortable standing. Total path distance and sway area of COP during comfortable standing with closed eyes showed significant positive correlation with the EMG activities of the lateral head of gastrocnemius muscle. Total path distances and total sway area of COP during muscle. Total path distances and total sway area of COP during presentation of virtual moving surround also had significant positive correlations with EMG activities of the lateral head of gastrocnemius muscle under close-far movement.

  • PDF

Evaluation on the Accuracy of Targeting Error Correction Through the Application of Target Locating System in Robotic CyberKnife (로봇 사이버나이프에서 위치인식시스템을 이용한 Targeting Error값 보정의 정확성 평가)

  • Jeong, Young-Joon;Jung, Jae-Hong;Lim, Kwang-Chae;Cho, Eun-Ju
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.21 no.1
    • /
    • pp.1-7
    • /
    • 2009
  • Purpose: The purpose is to evaluate the accuracy of correcting the targeting error through the Target Location System (TLS) for the location change error of the reference point which arises from the movement or motion of patient during the treatment using the CyberKnife. Materials and Methods: In this test, Gafchromic MD-55 film was inserted into the head and neck phantom to analyze the accuracy of the targeting, and then the 6 MV X-ray of CyberKnife (CyberKnife Robotic Radiosurgery System G4, Accuray, US) was irradiated. End to End (E2E) program was used to analyze the accuracy of targeting, which is provided by Accuray Corporation. To compute the error of the targeting, the test was carried out with the films that were irradiated 12 times by maintaining the distance within the rage of $0{\pm}0.2\;mm$ toward x, y, z from the reference point and maintaining the angle within the rage of $0{\pm}0.2^{\circ}$ toward roll, pitch, yaw, and then with the films which were irradiated 6 times by applying intentional movement. And the correlation in the average value of the reference film and the test film were analyzed through independent samples t-test. In addition, the consistency of dose distribution through gamma-index method (dose difference: 3%) was quantified, compared, and analyzed by varying the distance to agreement (DTA) to 1 mm, 1.5 mm, 2 mm, respectively. Results: E2E test result indicated that the average error of the reference film was 0.405 mm and the standard deviation was 0.069 mm. The average error of the test film was 0.413 mm with the standard deviation of 0.121 mm. The result of independent sampling t-test for both averages showed that the significant probability was P=0.836 (confidence level: 95%). Besides, by comparing the consistency of dose distribution of DTA through 1 mm, 1.5 mm, 2 mm, it was found that the average dose distribution of axial film was 95.04%, 97.56%, 98.13%, respectively in 3,314 locations of the reference film, consistent with the average dose distribution of sagittal film that was 95.47%, 97.68%, 98.47%, respectively. By comparing with the test film, it was found that the average dose distribution of axial film was 96.38%, 97.57%, 98.04%, respectively, at 3,323 locations, consistent with the average dose distribution of sagittal film which was 95.50%, 97.87%, 98.36%, respectively. Conclusion: Robotic CyberKnife traces and complements in real time the error in the location change of the reference point caused by the motion or movement of patient during the treatment and provides the accuracy with the consistency of over 95% dose distribution and the targeting error below 1 mm.

  • PDF

Strength Properties of Wooden Retaining Walls Manufactured with Pinus rigida Miller

  • Park, Jun-Chul;Kim, Keon-Ho;Lee, Dong-Heub;Son, Dong-Won;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.2
    • /
    • pp.140-147
    • /
    • 2011
  • The strength properties of wooden retaining wall which was made with pitch pine were evaluated. Wooden retaining wall was made with diameter 90 mm of pitch pine round posts treated with CUAZ-2 (Copper Azole). The length of the front stretcher of the retaining wall was 3,000 mm. The distance between the headers (the notched member) is 1,000 mm in center and is 900 mm in side. There were connections every 2,000 mm because actually the length of stretcher is limited in the retaining wall. The strength test was carried out according to connection type because the section between stretchers can act as a defect. A result of the strength test according to connection type confirms that connection does not act as defect because the strength of retaining wall in single stretcher is similar to that in the section between stretchers. The strength test of the wooden retaining wall was carried out in 5 types according to the condition of the base section. When the upper soil pressure was 9.8 kN/$m^2$, the maximum load of the retaining wall fixing the front foundation shows higher values than those of others. But the total deformation is lower in the retaining wall not to fix a base section than in that to fix a base section. It is thought that the retaining wall not to fix a base section shows low value because the deformation is distributed throughout the retaining wall and it is confirmed that the soil pressure affects supporting the structure because the deformation of the retaining wall under low pressure is 3~4 fold higher than those of others. The failure mode of the retaining wall is the overturning type because the high section is deformed. Mostly, the failure mode is the separation of the header in the notched section.

Flip Chip Process by Using the Cu-Sn-Cu Sandwich Joint Structure of the Cu Pillar Bumps (Cu pillar 범프의 Cu-Sn-Cu 샌드위치 접속구조를 이용한 플립칩 공정)

  • Choi, Jung-Yeol;Oh, Tae-Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.16 no.4
    • /
    • pp.9-15
    • /
    • 2009
  • Compared to the flip-chip process using solder bumps, Cu pillar bump technology can accomplish much finer pitch without compromising stand-off height. Flip-chip process with Cu pillar bumps can also be utilized in radio-frequency packages where large gap between a chip and a substrate as well as fine pitch interconnection is required. In this study, Cu pillars with and without Sn caps were electrodeposited and flip-chip-bonded together to form the Cu-Sn-Cu sandwiched joints. Contact resistances and die shear forces of the Cu-Sn-Cu sandwiched joints were evaluated with variation of the height of the Sn cap electrodeposited on the Cu pillar bump. The Cu-Sn-Cu sandwiched joints, formed with Cu pillar bumps of $25-{\mu}m$ diameter and $20-{\mu}m$ height, exhibited the gap distance of $44{\mu}m$ between the chip and the substrate and the average contact resistance of $14\;m{\Omega}$/bump without depending on the Sn cap height between 10 to $25\;{\mu}m$.

  • PDF

Influence of Turning Region and Channel Rotation on Pressure Drop in a Square Channel with Transverse Ribs (90° 요철이 설치된 정사각 덕트 내 압력강하에 곡관부 및 회전이 미치는 영향)

  • Kim, Kyung-Min;Lee, Dong-Hyun;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.2 s.245
    • /
    • pp.126-135
    • /
    • 2006
  • The pressure drop characteristics in a rotating two-pass duct with rib turbulators are investigated in the present study. The square duct has a hydraulic diameter $(D_h)$ of 26.7 mm, and $1.5mm{\times}1.5mm$ square $90^{\circ}-rib$ turbulators are attached on the leading and trailing walls. The pitch-to-rib height ratio (p/e) is 10. The distance between the tip of the divider and the outer wall of the duct is $1.0D_h$ and the width of divider wall is 6.0mm or $0.225D_h$. The Reynolds number (Re) based on the hydraulic diameter is kept constant at 10,000 to exclude the Reynolds effect, and the rotation number (Ro) is varied from 0.0 to 0.20. The pressure drop distribution, the friction factor and thermal performance are presented for the leading, trailing and the outer surfaces. It is found that the curvature of the $180^{\circ}$-turn produces Dean vortices that cause high pressure drop in the turn. The channel rotation results in pressure drop discrepancy between leading and trailing surfaces so that non-dimensional pressure drops are higher on the trailing surface in the first-pass and on the leading and side surfaces in the second-pass. In the turning region, Dean vortices shown in the stationary case transform into one large asymmetric vortex cell, and subsequent pressure drop characteristics also change. As the rotation number increases, the pressure drop discrepancy enlarges.

A study on the robust speaker recognition algorithm in noise surroundings (주변 잡음 환경에 강한 화자인식 알고리즘 연구)

  • Jung Jong-Soon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.6 s.38
    • /
    • pp.47-54
    • /
    • 2005
  • In the most of speaker recognition system, speaker's characteristics is extracted from acoustic parameter by speech analysis and we make speaker's reference pattern. Parameters used in speaker recognition system are desirable expressing speaker's characteristics fully and being a few difference whenever it is spoken. Therefore we su99est following to solve this problem. This paper is proposed to use strong spectrum characteristic in non-noise circumstance and prosodic information in noise circumstance. In a stage of making code book, we make the number of data we need to combine spectrum characteristic and Prosodic information. We decide acceptance or rejection comparing test pattern and each model distance. As a result, we obtained more improved recognition rate than we use spectrum and prosodic information especially we obtained stational recognition rate in noise circumstance.

  • PDF

Prosodic Boundary Effects on the V-to-V Lingual Movement in Korean

  • Cho, Tae-Hong;Yoon, Yeo-Min;Kim, Sa-Hyang
    • Phonetics and Speech Sciences
    • /
    • v.2 no.3
    • /
    • pp.101-113
    • /
    • 2010
  • The present study investigated how the kinematics of the /a/-to-/i/ tongue movement in Korean would be influenced by prosodic boundary. The /a/-to-/i/ sequence was used as 'transboundary' test materials which occurred across a prosodic boundary as in /ilnjəʃ$^h$a/ # / minsakwae/ ('일년차#민사과에' 'the first year worker' # 'dept. of civil affairs'). It also tested whether the V-to-V tongue movement would be further influenced by its syllable structure with /m/ which was placed either in the coda condition (/am#i/) or in the onset condition (/a#mi). Results of an EMA (Electromagnetic Articulagraphy) study showed that kinematical parameters such as the movement distance (displacement), the movement duration, and the movement velocity (speed) all varied as a function of the boundary strength, showing an articulatory strengthening pattern of a "larger, longer and faster" movement. Interestingly, however, the larger, longer and faster pattern associated with boundary marking in Korean has often been observed with stress (prominence) marking in English. It was proposed that language-specific prosodic systems induce different ways in which phonetics and prosody interact: Korean, as a language without lexical stress and pitch accent, has more degree of freedom to express prosodic strengthening, while languages such as English have constraints, so that some strengthening patterns are reserved for lexical stress. The V-to-V tongue movement was also found to be influenced by the intervening consonant /m/'s syllable affiliation, showing a more preboundary lengthening of the tongue movement when /m/ was part of the preboundary syllable (/am#i/). The results, together, show that the fine-grained phonetic details do not simply arise as low-level physical phenomena, but reflect higher-level linguistic structures, such as syllable and prosodic structures. It was also discussed how the boundary-induced kinematic patterns could be accounted for in terms of the task dynamic model and the theory of the prosodic gesture ($\pi$-gesture).

  • PDF

Experimental study to enhance cooling effects on total-coverage combustor wall (연소기 내벽의 전면 막냉각 사용시 효율 증대에 관한 연구)

  • Cho, Hyung-Hee;Goldstein, Richard J.
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.1
    • /
    • pp.165-173
    • /
    • 1997
  • The present study investigates heat/mass transfer for flow through perforated plates for application to combustor wall and turbine blade film cooling. The experiments are conducted for hole length to diameter ratios of 0.68 to 1.5, for hole pitch-to-diameter ratios of 1.5 and 3.0, for gap distance between two parallel perforated plates of 1 to 3 hole diameters, and for Reynolds numbers of 60 to 13, 700. Local heat/mass transfer coefficients near and inside the cooling holes are obtained using a naphthalene sublimation technique. Detailed knowledge of the local transfer coefficients is essential to analyze thermal stress in turbine components. The results indicate that the heat/mass transfer coefficients inside the hole surface vary significantly due to flow separation and reattachment. The transfer coefficient near the reattachment point is about four and half times that for a fully developed circular tube flow. The heat/mass transfer coefficient on the leeward surface has the same order as that on the windward surface because of a strong recirculation flow between neighboring jets from the array of holes. For flow through two perforated plate layers, the transfer coefficients on the target surface (windward surface of the second wall) affected by the gap spacing are approximately three to four times higher than that with a single layer.