• 제목/요약/키워드: Pitch control system

검색결과 427건 처리시간 0.033초

타원궤도상의 중력구배 인공위성의 Pitch운동의 혼돈계 제어 (Chaos Control of the Pitch Motion of the Gravity-gradient Satellites in an Elliptical Orbit)

  • 이목인
    • 한국항공우주학회지
    • /
    • 제39권2호
    • /
    • pp.137-143
    • /
    • 2011
  • 중력구배 인공위성의 pitch 운동이 관성 모멘트 비와 편심율에 따라 혼돈계가 될 수 있다. 혼돈계의 경우 운동의 정확한 예측을 위하여 비혼돈계로 전환하는 혼돈계 제어가 필요하다. 혼돈계 제어에는 feedback control system을 사용할 수 있다. 중력구배 인공위성의 pitch 운동의 혼돈계 제어를 위하여, 비선형 pitch 운동 방정식을 선형화를 하여 linear nonautonomous system을 구하고, 이를 근거로 pitch 운동의 혼돈계 제어와 안정화(stabilization)를 위한 제어법칙을 설계하고 원래의 비선형 혼돈계 pitch 운동에 적용하였다. 설계된 pitch 운동 제어계는 두 개의 parameter를 가지는데, 혼돈계 제어와 안정화에 만족할 만한 결과를 보여주었다.

피치제어형 풍력발전시스템의 속도제어 (Speed Control of a Wind Turbine System Based on Pitch Control)

  • 임종환;허종철
    • 제어로봇시스템학회논문지
    • /
    • 제7권2호
    • /
    • pp.109-116
    • /
    • 2001
  • The paper presents a speed control algorithm for a full pitch-controlled wind turbine system. Torque of a blade generated by wind energy is a nonlinear function of wind speed, angular velocity, and pitch angle of the blade. The design of the controller, in general, is performed by linearizing the torque in the vicinity of the operating point assuming the angular velocity of the blade is constant. For speed control, however the angular velocity is on longer a constant, so that linearization of the torque in terms of wind speed and pitch angle is impossible. In this study, a reference pitch model is derived in terms of a wind speed, angular velocity, and pitch angle, which makes it possible to design a controller without linearizing the nonlinear torque model of the blade. This paper also suggests a method of designing a hydraulic control system for changing the pitch angle of the blade.

  • PDF

항공기의 고도, 속도 및 깊은 실속의 회복을 위한 자동회복장치 설계 및 검증에 관한 연구 (A Study on the Design and Validation of Automatic Pitch Rocker System for Altitude, Speed and Deep Stall Recovery)

  • 김종섭
    • 제어로봇시스템학회논문지
    • /
    • 제15권2호
    • /
    • pp.240-248
    • /
    • 2009
  • Modem version of supersonic jet fighter aircraft must have been guaranteed appropriate controllability and stability in HAoA(High Angle of Attack). The HAoA flight control law have two parts, one is control law of departure prevention and the other is control law of departure recovery support. The control laws of departure prevention for advanced jet trainer consist of HAoA limiter, roll command limiter and rudder fader. The control laws of departure recovery support are consist of yaw-rate limiter and MPO(Manual Pitch Override) mode. The guideline of pitch rocking using MPO mode is simple, but operating skill of pitch rocking is very difficult by the pilot with inexperience of departure situation. Therefore, automatic deep stall recovery system is necessary. The system called the "Automatic Pitch Rocker System" or APRS, provided a pilot initiated automatic maneuver capable of an aircraft recoveries in situations of deep stall, speed and altitude. This paper addresses the design and validation for APRS to recovery of an deep stall without manual pitch rocking by the pilot. Also, this system is designed to recovery of speed, attitude and altitude after deep stall recovery using ATCS (Automatic Thrust Control System) and autopilot. Finally, this system is verified by real-time pilot evaluation using HQS (Handling Quality Simulator).

피치제어형 풍력발전시스템의 출력제어 (Power Control of a Pitch-controlled Wind Power System)

  • 임종환;허종철
    • 한국정밀공학회지
    • /
    • 제20권4호
    • /
    • pp.84-91
    • /
    • 2003
  • The paper presents a power control algorithm for a full pitch-controlled wind power system. The design of a pitch controller, in general, is performed by linearizing the torque in the vicinity of a operating point assuming the tip speed ratio is constant. For power control, however, the tip speed ratio is no longer a constant. In this study, a reference pitch model is derived in terms of a wind speed, angular velocity, and pitch angle. The reference pitch model is used to design a controller without linearizing the non-linear torque model of the blade. The validity of the algorithm is demonstrated with the results produced through sets of simulation.

Simulation for Pitch Angle Control Strategies of a Grid-Connected Wind Turbine System on MATLAB/Simulink

  • 노경수;최준호
    • 조명전기설비학회논문지
    • /
    • 제21권1호
    • /
    • pp.91-97
    • /
    • 2007
  • This paper presents a pitch angle controller of a grid-connected wind turbine system for extracting maximum power from wind and implements a modeling and simulation of the wind turbine system on MATLAB/Simulink. It discusses the maximum power control algorithm for the wind turbine and presents, in a graphical form, the relationship of wind turbine output, rotor speed, and power coefficient with wind speed when the wind turbine is operated under the maximum power control algorithm. The objective of pitch angle control is to extract maximum power from wind and is achieved by regulating the blade pitch angle during above-rated wind speeds in order to bypass excessive energy in the wind. Case studies demonstrate that the pitch angle control is carried out to achieve maximum power extraction during above-rated wind speeds and effectiveness of the proposed controller would be satisfactory.

MW 풍력터빈의 피드포워드 제어 (Feed Forward Control of the MW Wind Turbine)

  • 임창희;남윤수;김정기;최한순
    • 풍력에너지저널
    • /
    • 제2권1호
    • /
    • pp.82-89
    • /
    • 2011
  • his dissertation is on power control system for MW-class wind turbine. Especially, the control purpose is reduction in electrical power and rotor speed. The base control structure is power curve tracking control using variable speed variable pitch operational type. For the reduction of fluctuations, more control algorithm is needed in above rated wind conditions. Because general pitch control system is low dynamic response as compared with the wind speed change. So, this paper introduces about the pitch feed forward control to minimize fluctuations of the electrical power and rotor speed. To maintain rated electrical power, the algorithm of feed forward control adds feed forward pitch amount to the pitch command of power curve tracking control. The effectiveness of the feed forward control is verified through the simulation.

Pitch Angle Control and Wind Speed Prediction Method Using Inverse Input-Output Relation of a Wind Generation System

  • Hyun, Seung Ho;Wang, Jialong
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권5호
    • /
    • pp.1040-1048
    • /
    • 2013
  • In this paper, a sensorless pitch angle control method for a wind generation system is suggested. One-step-ahead prediction control law is adopted to control the pitch angle of a wind turbine in order for electric output power to track target values. And it is shown that this control scheme using the inverse dynamics of the controlled system enables us to predict current wind speed without an anemometer, to a considerable precision. The inverse input-output of the controlled system is realized by use of an artificial neural network. The proposed control and wind speed prediction method is applied to a Double-Feed Induction Generation system connected to a simple power system through computer simulation to show its effectiveness. The simulation results demonstrate that the suggested method shows better control performances with less control efforts than a conventional Proportional-Integral controller.

피치 제어를 이용한 계통연계 풍력발전 시스템의 최대출력 제어 (The control of maximum power output for a grid-connected wind turbine system by using pitch control method)

  • 유행수;노경수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 춘계학술대회 논문집 전력기술부문
    • /
    • pp.159-161
    • /
    • 2001
  • This study is for the pitch control of blade, used in most horizontal-axis wind turbine systems, to sustain the maximum power output supplied to grid. The control of a blade can be divided into a stall regulation and a pitch control methods. The stall regulation method using an aerodynamic stall is simple and cheap, but it suffers from fluctuation of the resulting power. Pitch control method is mechanically and mathematically complicated, but the control performance is better than that of the stall regulation method. In this paper 2.5MW MOD-2 wind turbine system is adopted to be controlled by a pitch controller with PI method. The simulation performed by MA TLAB will show the variation of frequency, generator output, and pitch angle.

  • PDF

A Study on Longitudinal Phugoid Mode Affected by Application of Nonlinear Control Laws

  • Kim, Chong-Sup;Hur, Gi-Bong;Kim, Seung-Jun
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제8권1호
    • /
    • pp.21-31
    • /
    • 2007
  • Relaxed Static Stability (RSS) concept has been applied to improve aerodynamic performance of modern version supersonic jet fighter aircraft. The T-50 advanced supersonic trainer employs the RSS concept in order to improve the aerodynamic performance. And the flight control system stabilizes the unstable aircraft and provides adequate handling qualities. The T-50 longitudinal control laws employ a proportional-plus-integral type controller based on a dynamic inversion method. The longitudinal dynamic modes consist of short period with high frequency and phugoid mode with low frequency. The design goal of longitudinal control law is optimization of short period damping ratio and frequency using Lower Order Equivalent System (LOES) complying the requirement of MIL-F-8785C. This paper addresses phugoid mode characteristics such as damping ratio and natural frequency that is affected by the nonlinear control laws such as angle of attack limiter, auto pitch attitude command system and autopilot of pitch attitude hold.

2MW급 풍력발전용 블레이드 피치 제어 시스템 개발 (Development of pitch control system for 2WM wind turbine)

  • Choi, Hee-young;Ryu, Ji-su;Lee, Sang-ho
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2011년도 전력전자학술대회
    • /
    • pp.285-286
    • /
    • 2011
  • Wind turbine system is converting wind energy into electric energy. In nature, torque of the blade is nonlinear function. To get a high quality electric power, system needs control of blade angle. The control of a blade is divided into a stall regulation type and a pitch control type. Pitch control type is more expensive and complicated, but it can make torque of the blade in accordance with variable wind. This paper shows 2MW pitch control system's hardware and electric part.

  • PDF