• Title/Summary/Keyword: Pitch angle

Search Result 698, Processing Time 0.028 seconds

Over current characteristics of HTS tapes with various pitch angle (피치각에 따른 고온초전도 선재의 과전류 특성)

  • Yim, Seong-Woo;Hwang, Si-Dole;Choi, Hyo-Sang;Hyun, Ok-Bae;Han, Byoung-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.961-963
    • /
    • 2002
  • When high temperature superconducting(HTS) tapes are wound on former for HTS cable application, their critical characteristics are likely to be degraded seriously because of mechanical stress. In this study, prior to fabricate prototype HTS cables, we investigated the variation of critical characteristics of HTS tapes according to their pitch angles. For this work, we prepared the samples of HTS tapes on the former of which diameter is 3cm. Pitch angles of HTS tapes are $0^{\circ}$, $00^{\circ}$, $20^{\circ}$, $30^{\circ}$, $40^{\circ}$, respectively. We applied current up to 160 $A_{rms}$ to HTS tapes and investigated E-I characteristics. The critical current of HTS tapes was decreased as pitch angle increased. In addition, when the applied current was beyond their critical current, the rate of resistance increase of HTS tapes was in proportion to their critical current. Finally, We concluded that the pitch angles affected resistance increase of HTS tapes as well as critical current.

  • PDF

Tooth Profile Design of an Oval Gear According to the Curvature of the Pitch Curve (오벌기어의 피치곡선 곡률에 따른 치형 설계)

  • Lee, Sung-Chul
    • Tribology and Lubricants
    • /
    • v.28 no.1
    • /
    • pp.27-32
    • /
    • 2012
  • Oval gears are typical kinds of non-circular gears and are widely used in flow meters. This paper presents a tooth profile design of an oval gear according to the curvature of the pitch curve. The length of the pitch oval is divided by the number of teeth and the curvature of the divided points is obtained. The tooth profile is designed on the circle of the curvature as if it is the pitch circle of a gear. The teeth of the oval gear have the same module and pressure angle, but the pitch circle of each tooth differs in size. Thus, the teeth on the divided points of the pitch oval are different in shape. This type of oval gear will improve the meshing properties.

The Development of Blade Pitch System Using Super Capacitor Storage (슈퍼 커패시터를 장착한 풍력발전용 피치 시스템 개발)

  • Choi, Hee-young;Ryu, Ji-su;Lee, Sang-ho
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.311-312
    • /
    • 2012
  • Blade pitch control system monitors and adjusts angle of the blades and controls rotation speed of blades. This paper shows 2MW pitch system hardware and electric part. Blade pitch system consists of pitch drive, gear box, motor and energy storage. Fieldbus is base on CANopen protocol. Fail-Safe system moves the blades to a safety position in case of any fault condition. The super capacitor energy storage provides emergency back up to the Pitch servo driver during feathering the blades. This paper studied Blade pitch servo driver and a bi-directional DC-DC converter for fail-safe system.

  • PDF

Predisposing Factors and Treatment for the Fifth Proximal Metatarsal Fracture (제5 중족골 기저부 골절의 유발인자 및 치료)

  • Shin, Hun-Kyu;Choi, Jae-Yeol;Lee, Ji-Won
    • Journal of Korean Foot and Ankle Society
    • /
    • v.11 no.1
    • /
    • pp.67-71
    • /
    • 2007
  • Purpose: To evaluate clinical results of the 5th proximal metatarsal intraarticular fracture (Zone I) with displacement treated operatively and to evaluate predisposing factors of the 5th proximal metatarsal fracture (Zone I). Materials and Methods: 11 patients treated for the 5th proximal metatarsal fracture (Zone I) operatively and 10 patients treated conservatively between Jan 2003 and Dec 2005, were followed for more than one year. Functions were graded by AOFAS foot scoring system and union time and postoperative complications were also evaluated. Calcaneal pitch angle was also evaluated. Results: Clinically there were no much difference in results. Clinical points were 94.5 in the operative group and 92.3 in the conservative group. At the last follow-up, the radiographic results showed union in all cases. During the follow-up period, there were no significant complications. But in the conservative group, displaced fracture with calcaneal pitch angle over 30 degree tends to show delayed union and time to loss of pain tends to be prolonged. Conclusion: Calcaneal pitch angle is thought to predisposing factor for 5th metatarsal base fracture. Operative treatment is viable option for the 5th proximal metatarsal intraarticular fracture with displacement and with calcaneal pitch angle over 30 degree. In cases of cavovarus foot deformity, we think operative treatment should be considered with deliberation and long term follow-up study for peroneal tendinopathy should be needed.

  • PDF

A Study on Flying Height of Head Slider in Rotary Type Actuator (회전 구동용 헤드 슬라이더의 부상높이에 관한 연구)

  • 이재헌;최동훈;윤상준;김광식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.1886-1896
    • /
    • 1991
  • This paper presents a method to predict the flying height of the head slider in a hard disk drive. Quantitative predicts of the flying height according to the variations of the external load and the disk velocity have been done by numerical computation. In addition, the magnitude of the external load to keep flying height constant were also suggested. The Modified Reynolds' equation driven from hydrodynamic lubrication theory under slip flow condition was used to describe air-bearing system under the slider. To solve the equation, a Finite Volume Method (FVM) has been applied. To determine the final minimum flying height and pitch angle of the head slider, the Secant iteration method is used which update initial guess of the minimum flying height and pitch angle of the slider. In this study, the model head slider has been selected from a real hard disk drive which is equipped in many commercial personal computers. As a result, as the disk velocity increases at constant external load, the minimum flying height and the pitch angle increase due to the in crease of the air-bearing force at the bottom of slider.

Laminar Flow in the Entrance Region of Helical Tubes Connected with Straight Ones (직관과 연결된 나선관 입구영역의 층류 유동)

  • Kim, Young-In;Park, Jong-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.1
    • /
    • pp.9-17
    • /
    • 2008
  • A numerical study for three-dimensional laminar flow in the entrance region of helical tubes connected with straight ones is carried out to investigate the effects of Reynolds number, pitch and curvature ratio on the oscillation periods of the flow. The fully elliptic governing equations were solved by means of a finite volume method. The fully developed laminar flow boundary condition was applied at the straight tube inlet. This results cover a curvature ratio range of 1/10${\sim}$1/320, a pitch range of 0.0${\sim}$3.2, and a Reynolds number range of 62.5${\sim}$2000. A comparison is made with previous experimental correlations and numerical data. The developments of velocity, local and average friction factors are discussed. The average friction factors are oscillatory in the entrance region of helical pipes. It has been found that the angle required for the flow to be similarly developed is most affected by the curvature ratio. The pitch and Reynolds number do not have any significant effect on the angle. The characteristic angle ${\phi}_c(={\phi}/sqrt{\delta})$, or the characteristic length to diameter ratio $s_c(=l\sqrt{\delta} cos(atan{\lambda})/d)$, can be useful to represent the development of flow in helical tubes. As the pitch increases and as the curvature ratio and Reynolds number decrease, the amplitude and the number of flow oscillations along the main streamwise direction decrease.

Dedicated Cutback Control of a Wind Power Plant Based on the Ratio of Command Power to Available Power

  • Thapa, Khagendra;Yoon, Gihwan;Lee, Sang Ho;Suh, Yongsug;Kang, Yong Cheol
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.835-842
    • /
    • 2014
  • Cutback control in a grid code is one of the functions of a wind power plant (WPP) that is required to support the system protection and frequency stability. When a cutback control command signal is delivered to the WPP from the system operator, the output of a WPP should be decreased to 20% of the rated power within 5 s. In this paper, we propose a dedicated cutback control algorithm of a WPP based on the ratio of the command power to the available power. If a cutback control signal is delivered, the algorithm determines the pitch angle for the cutback control and starts the pitch angle control. The proposed algorithm keeps the rotor speed at the speed before the start of the cutback control to quickly recover the previous output prior to the cutback control. The performance of the algorithm was validated for a 100 MW aggregated WPP based on a permanent magnet synchronous generator under various wind conditions using an EMTP-RV simulator. The results clearly shows that the proposed algorithm not only successfully reduces the output to the command power within 5 s by minimizing the fluctuation of the pitch angle, but also rapidly recovers to the output level before the cutback control.

Experimental investigation of flow parameters influencing the calibration of five-hole probes (5공프로우브의 보정에 영향을 주는 유동변수들에 대한 실험적 연구)

  • Lee, Sang-U;Yun, Tae-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.5
    • /
    • pp.637-649
    • /
    • 1997
  • Effects of cone angle, pressure-hole orientation and Reynolds number on the five-hole probe calibration have been investigated for eight large-scale conical five-hole probes, which have either perpendicular pressure holes or forward-facing pressure holes for the cone angles of 45 deg, 60 deg, 75 deg and 90.deg. Pitch and yaw angles are changed from -40 deg to +40 deg with an interval of 5 deg, respectively, when the probe Reynolds numbers are 1.77*10$^{4}$, 3.53*10$^{4}$ and 7.06*10$^{4}$. The result shows that larger cone angle results in more sensitive changes in the calibration coefficients. In the case that the cone angle is 45 deg, the pitch-angle and yaw-angle coefficients of the five-hole probe with the perpendicular pressure holes show a very different trend compared with those of the five-hole probe with the forward-facing pressure holes. On the other hand, when the cone angle is more than 60 deg, each calibration coefficient is nearly independent of the pressure-hole orientation. Additionally, the effects of the Reynolds number on the calibration coefficients are also reported in detail.

Modeling of a Grid-Connected Wind Energy Conversion System for Dynamic Performance Analysis (동특성해석을 위한 계통연계 풍력발전 시스템의 모델링)

  • Choo, Yeoun-Sik;Ro, Kyoung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1358-1360
    • /
    • 2002
  • This paper presents a modeling and simulation of a utility-connected wind energy conversion system with a link of a rectifier and an inverter. It discusses the maximum power control algorithm for the wind turbine and presents the relationship of wind turbine output, rotor speed, power coefficient, tip-speed ratio and wind speed when the wind turbine is operated under the maximum power control algorithm. The control objective is to extract maximum power from wind and transfer the power to the utility. This is achieved by controlling the pitch angle of the wind turbine blades. Pitch control method is mechanically complicated, but the control performance is better than that of the stall regulation method. The simulation results performed on MATLAB will show the variation of generator's rotor speed, pitch angle, and generator output.

  • PDF

Numerical Analysis and Design of the 2-D Variable Convergent-Divergent Thrust Vectoring Nozzle (2-D 가변 추력편향 노즐 설계 및 유동해석)

  • Kim, Yoon-Hee;Kang, Hyung-Seok;Choi, Seong-Man;Chang, Hyun-Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.5
    • /
    • pp.27-34
    • /
    • 2011
  • A numerical analysis was peformed for the supersonic aircraft with variable pitch thrust vector nozzle. Based on the requirement of the mixed turbofan engine of the supersonic aircraft, two dimensional thrust vector nozzle with variable pitch angle was designed. To investigate the effect of the thrust vectoring nozzle, the numerical analysis was conducted by using Fluent under the several pitch deflection angle.