• Title/Summary/Keyword: Pitch Ratio

Search Result 527, Processing Time 0.023 seconds

Monitoring on the Soils and Plant Growth in Modular Sloped Rooftop Greening System (모듈형 경사지붕 녹화시스템의 토양과 식물생육 모니터링)

  • Ryu, Nam-Hyong;Lee, Chun-Seok
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.14 no.5
    • /
    • pp.53-67
    • /
    • 2011
  • The major objective of this study was to quantify the effects of substrate depth and substrate composition on the development of sedum etc., in a sloped rooftop (6 : 12 pitch) environment during a 4-year period. The experiment was conducted from 2006 October to 2010 December under several conditions without soil erosion control : two substrate depth (5cm, 10cm), four substrate composition (A5N3C2, A3N3C4, A6C4, G5L3C2: A: artificial lightweight soil, N : natural soil, G : granite decomposed soil, C : leave composite, L : loess), four sloped roof direction ($E40^{\circ}W$, $W40^{\circ}N$, $S40^{\circ}W$, $N40^{\circ}E$). In this experiment 4 sedum etc., were used: Sedum sarmentosum, Sedum kamtschaticum, Sedum rupestre, Sedum telephium, flowering herbs (mixed seed : Taraxacum platycarpum, Lotus corniculatus, Aster yomena, Aster koraiensis), western grasses (mixed seed : Tall fescue, Creeping redfescue, Bermuda grass, Perennial ryegrass). The establishment factor had two levels : succulent shoot establishment (sedum), seeding (flowering herbs, western grasses). 1. Enkamat, as it bring about top soil exfoliation, was unsuitable material for soil erosion control. 2. Sedum species exhibited greater growth at a substrate depth of 10cm relative to 5cm. All flowering herbs and western grasses established only at a substrate depth of 5cm were died. A substrate depth of 5cm was not suited in sloped rooftop greening without maintenance. If additional soil erosion control will be supplemented, a substrate depth of 10cm in sloped rooftop greening without maintenance was considered suitable. 3. For all substrate depth and composition, the most abundant species was Sedum kamtschaticum. The percentage of surviving Sedum kamtschaticum was 73.4% at a substrate depth of 10cm in autumn 2007 one year after the roof vegetation had been established. But the percentage of surviving other sedum were 33.3%~51.9%, therefor mulching for soil erosion control was essential after rooftop establishment in extensive sloped roof greening was proved. To raise the ratio of plant survival, complete establishment of plant root at substrate was considered essential before rooftop establishment. 4. There was a significant interaction between biomass and substrate moisture content. There were also a significant difference of substrate moisture and erosion among substrate composition. The moisture content of A6C4 was highest, the resistance to erosion of A5N3C2 was highest among substrate composition. The biomass of plants were not significantly higher in A5N3C2 and A6C4 relative to A3N3C4 and G5L3C2, For substrate moisture and erosion resistance, A5N3C2 and A6C4 were considered suitable in sloped rooftop greening without maintenance. 5. There were significant difference among roof slope direction on the substrate moisture. Especially, the substrate moisture content of $S40^{\circ}W$ was lower relative to that of $N40^{\circ}E$, that guessed by solar radiation and erosion.

Current Sensing Trench Gate Power MOSFET for Motor Driver Applications (모터구동 회로 응용을 위한 대전력 전류 센싱 트렌치 게이트 MOSFET)

  • Kim, Sang-Gi;Park, Hoon-Soo;Won, Jong-Il;Koo, Jin-Gun;Roh, Tae-Moon;Yang, Yil-Suk;Park, Jong-Moon
    • Journal of IKEEE
    • /
    • v.20 no.3
    • /
    • pp.220-225
    • /
    • 2016
  • In this paer, low on-resistance and high-power trench gate MOSFET (Metal-Oxide-Silicon Field Effect Transistor) incorporating current sensing FET (Field Effect Transistor) is proposed and evaluated. The trench gate power MOSFET was fabricated with $0.6{\mu}m$ trench width and $3.0{\mu}m$ cell pitch. Compared with the main switching MOSFET, the on-chip current sensing FET has the same device structure and geometry. In order to improve cell density and device reliability, self-aligned trench etching and hydrogen annealing techniques were performed. Moreover, maintaining low threshold voltage and simultaneously improving gate oxide relialility, the stacked gate oxide structure combining thermal and CVD (chemical vapor deposition) oxides was adopted. The on-resistance and breakdown voltage of the high density trench gate device were evaluated $24m{\Omega}$ and 100 V, respectively. The measured current sensing ratio and it's variation depending on the gate voltage were approximately 70:1 and less than 5.6 %.

Visualization of Flow in a Transonic Centrifugal Compressor

  • Hayami Hiroshi
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.1-6
    • /
    • 2002
  • How is the flow in a rotating impeller. About 35 years have passed since one experimentalist rotating with the impeller. of a huge centrifugal blower made the flow measurements using a hot-wire anemometer (Fowler 1968). Optical measurement methods have great advantages over the intrusive methods especially for the flow measurement in a rotating impeller. One is the optical flow visualization (FV) technique (Senoo, et al., 1968) and the other is the application of laser velocimetry (LV) (Hah and Krain, 1990). Particle image velocimetries (PIVs) combine major features of both FV and LV, and are very attractive due to the feasibility of simultaneous and multi-points measurements (Hayami and Aramaki, 1999). A high-pressure-ratio transonic centrifugal compressor with a low-solidity cascade diffuser was tested in a closed loop with HFC134a gas at 18,000rpm (Hayami, 2000). Two kinds of measurement techniques by image processing were applied to visualize a flow in the compressor. One is a velocity field measurement at the inducer of the impeller using a PIV and the other is a pressure field measurement on the side wall of the cascade diffuser using a pressure sensitive paint (PSP) measurement technique. The PIV was successfully applied for visualization of an unsteady behavior of a shock wave based on the instantaneous velocity field measurement (Hayami, et al., 2002b) as well as a phase-averaged velocity vector field with a shock wave over one blade pitch (Hayami, et al., 2002a. b). A violent change in pressure was successfully visualized using a PSP measurement during a surge condition even though there are still some problems to be overcome (Hayami, et al., 2002c). Both PIV and PSP results are discussed in comparison with those of laser-2-focus (L2F) velocimetry and those of semiconductor pressure sensors. Experimental fluid dynamics (EFDs) are still growing up more and more both in hardware and in software. On the other hand, computational fluid dynamics (CFDs) are very attractive to understand the details of flow. A secondary flow on the side wall of the cascade diffuser was visualized based either steady or unsteady CFD calculations (Bonaiuti, et al.,2002). EFD and CFD methods will be combined to a hybrid method being complementary to each other. Measurement techniques by image processing as well as CFD calculations give a huge amount of data. Then, data mining technique will become more important to understand the flow mechanism both for EFD and CFD.

  • PDF

Application of CFD to Design Procedure of Ammonia Injection System in DeNOx Facilities in a Coal-Fired Power Plant (석탄화력 발전소 탈질설비의 암모니아 분사시스템 설계를 위한 CFD 기법 적용에 관한 연구)

  • Kim, Min-Kyu;Kim, Byeong-Seok;Chung, Hee-Taeg
    • Clean Technology
    • /
    • v.27 no.1
    • /
    • pp.61-68
    • /
    • 2021
  • Selective catalytic reduction (SCR) is widely used as a method of removing nitrogen oxide in large-capacity thermal power generation systems. Uniform mixing of the injected ammonia and the inlet flue gas is very important to the performance of the denitrification reduction process in the catalyst bed. In the present study, a computational analysis technique was applied to the ammonia injection system design process of a denitrification facility. The applied model is the denitrification facility of an 800 MW class coal-fired power plant currently in operation. The flow field to be solved ranges from the inlet of the ammonia injection system to the end of the catalyst bed. The flow was analyzed in the two-dimensional domain assuming incompressible. The steady-state turbulent flow was solved with the commercial software named ANSYS-Fluent. The nozzle arrangement gap and injection flow rate in the ammonia injection system were chosen as the design parameters. A total of four (4) cases were simulated and compared. The root mean square of the NH3/NO molar ratio at the inlet of the catalyst layer was chosen as the optimization parameter and the design of the experiment was used as the base of the optimization algorithm. The case where the nozzle pitch and flow rate were adjusted at the same time was the best in terms of flow uniformity.

Evaluation of Image Qualities for a Digital X-ray Imaging System Based on Gd$_2$O$_2$S(Tb) Scintillator and Photosensor Array by Using a Monte Carlo Imaging Simulation Code (몬테카를로 영상모의실험 코드를 이용한 Gd$_2$O$_2$S(Tb) 섬광체 및 광센서 어레이 기반 디지털 X-선 영상시스템의 화질평가)

  • Jung, Man-Hee;Jung, In-Bum;Park, Ju-Hee;Oh, Ji-Eun;Cho, Hyo-Sung;Han, Bong-Soo;Kim, Sin;Lee, Bong-Soo;Kim, Ho-Kyung
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.4
    • /
    • pp.253-259
    • /
    • 2004
  • in this study, we developed a Monte Carlo imaging simulation code written by the visual C$\^$++/ programing language for design optimization of a digital X-ray imaging system. As a digital X-ray imaging system, we considered a Gd$_2$O$_2$S(Tb) scintillator and a photosensor array, and included a 2D parallel grid to simulate general test renditions. The interactions between X-ray beams and the system structure, the behavior of lights generated in the scintillator, and their collection in the photosensor array were simulated by using the Monte Carlo method. The scintillator thickness and the photosensor array pitch were assumed to 66$\mu\textrm{m}$ and 48$\mu\textrm{m}$, respertively, and the pixel format was set to 256 x 256. Using the code, we obtained X-ray images under various simulation conditions, and evaluated their image qualities through the calculations of SNR (signal-to-noise ratio), MTF (modulation transfer function), NPS (noise power spectrum), DQE (detective quantum efficiency). The image simulation code developed in this study can be applied effectively for a variety of digital X-ray imaging systems for their design optimization on various design parameters.

The Utilization of Corn Stalk, Pine Bark, Pine Leaves, Wheat and Wood Flour as an Extender for Plywood Bonding (옥촉서간(玉蜀黍幹), 송수피(松樹皮), 소맥(小麥), 리기다송엽(松葉), 잣나무엽(葉) 및 목분말(木粉末)을 이용(利用)한 합판(合板)의 접착증량(接着增量)에 관(關)한 연구(硏究))

  • Lee, Phil Woo;Kwon, Jin Heon
    • Journal of Korean Society of Forest Science
    • /
    • v.51 no.1
    • /
    • pp.41-50
    • /
    • 1981
  • The purpose of this study was to evaluate the substitutional possibility of new extender instead of wheat flour, which is extending for plywood adhesives in Korea. As the extending materials corn stalk, pine bark, Pitch and Korean pine leaves, wheat, or wood flour were selected and prepared for the extending powders, dried at $103{\pm}2^{\circ}C$ during 24 hours in the drying oven, followed by being pulverized into 60-100 mesh powder. The extenders were mixed with urea formaldehyde resin in the ratio of 5, 10, 15 or 20%. After plywoods were manufactured by the above extended ratios, dry and wet shear strength and wood failures were analyzed and discussed. The results at the study may be summarized as follows ; 1. In urea formaldehyde resin dry shear strength in plywood extended by wheat flour showed the highest value. 2. Among the extenders in 10 and 20% extension of urea formaldehyde resin wet shear strength of wood flour was higher than that of wheat powder. They had no significant difference statistically. 3. Among the extenders of 5% extension of water soluble phenol formaldehyde resin dry shear strength of plywood extended by Korean pine leaf powder showed the highest value, while wheat powder showed the highest value among 10, 15 and 20% extentions. 4. In water soluble phenol formaldehyde resin the best results of wet shear strength showed in wheat powder. 5. Among the extenders in 15 and 20% extension of water soluble phenol formaldehyde resin, dry and wet shear strength in plywood of corn stalk powder were the highest value next to wheat powder.

  • PDF

Fundamental Studies on the Development of Axial-Flow Combine(I) -Evaluation of the Design Parameters of Grain-Straw Separator- (축류(軸流) 콤바인의 개발(開發)에 관(關)한 기초(基礎) 연구(硏究)(I) -조선별장치(粗選別裝置)의 설계변수(設計變數)의 평가(評價)-)

  • Lee, S.K.;Kim, S.T.;Choi, K.H.
    • Journal of Biosystems Engineering
    • /
    • v.11 no.2
    • /
    • pp.31-40
    • /
    • 1986
  • Cylindrical and conical types of grain-straw separation equipment which has a stationary crimped sieve drum with rotating inner rotor were constructed. The developed equipments were tested to investigate the characteristics of separating performance under various mechanical conditions and crop conditions. As increase of the inclination of equipment and decrease of pitch of cover vane, the grain recovery was increased while straw rejection was decreased. The grain recovery and overall efficiency were decreased as the rotor speed and feeding velocity were increased for both varieties of rice, moisture contents, and test equipments. Conical prototype equipment performed higher straw rejection, lower grain recovery, and lower power requirement. However, separation performance of conical type equipment was more widely varied with various test conditions compared to cylindrical one. The performance of both equipments showed relatively insensitive to crop feedrate and crop properties, such as variety, moisture content, and grain-to-straw ratio.

  • PDF