• Title/Summary/Keyword: Pitch Gain-Scheduling

Search Result 9, Processing Time 0.028 seconds

An Effect of Pitch Gain-Scheduling on Shaft Vibration Response of Wind Turbine (풍력터빈 축 진동 응답에 대한 피치 게인-스케쥴링의 효과)

  • Lim, Chae-Wook;Jo, Jun-Chul
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.2
    • /
    • pp.36-40
    • /
    • 2012
  • Pitch control of wind turbine is activated above rated wind speed for the purpose of rated power regulation. When we design pitch controller, its gain-scheduling is essential due to nonlinear characteristics of aerodynamic torque. In this study, 2-mass model including a vibration mode of drive-train for a 2 MW wind turbine is considered and pitch control with gain-scheduling using a linearization analysis of the nonlinear aerodynamic torque is applied. Some simulation results for the pitch gain-scheduling under step wind speed are presented and investigated. It is shown that gain-scheduling in pitch control is important especially in the region of high wind speeds when there exists a vibration mode of drive-train.

An Investigation on Step Responses of Pitch PI Controller for a 2MW Wind Turbine Using Bladed S/W (Bladed S/W를 이용한 2MW급 풍력터빈에 대한 피치 PI 제어기의 계단응답 고찰)

  • Lim, Chae Wook
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.1
    • /
    • pp.59-64
    • /
    • 2015
  • The pitch control system in wind turbines becomes more and more important as the wind turbines are larger in multi-MW size. PI controller has been applied in most pitch controllers and it has been known that gain-scheduling is essential for pitch control of wind turbines. A demo model of 2 MW wind turbine which represents the whole dynamics of wind turbine including dynamic behaviors of blade, tower and rotational shaft is given in the commercial Bladed S/W for real wind turbines. In this paper, some results on step responses of the pitch PI controller and effectiveness of gain-scheduled pitch PI controller are presented through the Bladed S/W for the 2 MW wind turbine.

A study on the gain-scheduling of missile autopilot (유도탄 제어기의 이득-스케듈링에 관한 연구)

  • 송찬호;김윤식
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.355-360
    • /
    • 1991
  • A method of autopilot gain-scheduling is presented for missiles which have heavy aerodynamic coupling between pitch and yaw channels due to high maneuverability. Pitch and yaw, autopilot are cross-coupled, and their feedback gains are scheduled by total acceleration and bank angle for given Mach number and height. Bank angle information is obtained by using a simple estimator. By computer simulation, it is shown that the proposed method is superior to other existing methods.

  • PDF

A Study on the Gain Scheduling Speed Controller of Permanent Magnet Synchronous Generators for MW-Class Direct-Driven Wind Turbine Systems (MW급 직접구동형 풍력터빈시스템을 위한 영구자석 동기발전기의 게인 스케쥴링 속도제어기에 대한 연구)

  • Choi, Young-Sik;Yu, Dong-Young;Choi, Han-Ho;Jung, Jin-Woo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.8
    • /
    • pp.48-59
    • /
    • 2011
  • This paper presents a new gain scheduling speed controller of permanent magnet synchronous generators(PMSG) for MW-class direct-driven wind turbine systems. The proposed gain scheduling speed controller performs the speed tracking at more than one operating point, and the first-order torque observer estimates the turbine torque which is needed to precisely control the speed of PMSG. The proposed speed controller verifies that the PMSG can successfully follow the reference speed which is determined via the maximum power point tracking(MPPT) control and pitch control under turbulent wind conditions. The proposed speed control algorithm is simulated using Simulink and its performance is confirmed through comparison with the results by PI control method.

Development of Control System for 2MW Direct Drive Wind Turbine (2MW급 직접구동형 풍력터빈 제어시스템 개발)

  • Moon, Jun-Mo;Jang, Jeong-Ik;Yoon, Kwang-Yong;Joe, Gwang-Myung;Lee, Kwon-Hee
    • Journal of Wind Energy
    • /
    • v.2 no.1
    • /
    • pp.90-96
    • /
    • 2011
  • The purpose of this paper is to describe the control system for optimal performance of 2MW gearless PMSG wind turbine system, and to afford some techniques of the algorithm selection and design optimization of the wind turbine control system through analysis of load calculation and control characteristic. Wind turbine control system is composed of the main control system and remote control and monitoring system. The main control system is industrial PC based controller, and the remote control and monitoring system is a server based computer system. The main control system has a supervisory control of the wind turbine with operation procedures and power-speed control through the torque control by pitch angle. There are some applications to optimize the wind turbine system at the starting mode with increasing of rotor speed, and cut-in operating mode to prevent trundling cut-in and cut-out, a gain scheduling of pitch PID controller, torque scheduling and limitation of generation power by temperature limitation or remote command by remote control and monitoring system. Also, the server operation program of the remote control and monitoring system and the design of graphical display are described in this paper.

Pitch-axis Maneuver of UAVs by Adaptive Control Approach (무인항공기의 적응제어 법칙을 이용한 피치 기동 연구)

  • Bang, Hyo-Choong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.12
    • /
    • pp.1170-1176
    • /
    • 2010
  • This study addresses adaptive control of UAVs(Unmanned Aerial Vehicles) pitch-axis maneuver. The MRAC(Model Referenced Adaptive Control) approach is employed to accommodate uncertainties which are introduced by feedback linearization of pitch attitude control by elevator input. The model uncertainty is handled by adaptation laws which update model parameters while the UAV is under control by the feedback control law. Steady-state pitch attitude achieved by the stabilizing control law is derived to provide insight on the closed-loop behavior of the controlled system. The proposed idea is free of linearization, gain-scheduling procedures, so that one can design high maneuverability of UAVs for pitching motion in the presence of significant model uncertainty.

Alleviating the Tower Mechanical Load of Multi-MW Wind Turbines with LQR Control

  • Nam, Yoonsu;Kien, Pham Trung;La, Yo-Han
    • Journal of Power Electronics
    • /
    • v.13 no.6
    • /
    • pp.1024-1031
    • /
    • 2013
  • This paper addresses linear quadratic regulation (LQR) for variable speed variable pitch wind turbines. Because of the inherent nonlinearity of wind turbines, a set of operating conditions is identified and then a LQR controller is designed for each of the operating points. The feedback controller gains are then interpolated linearly to get a control law for the entire operating region. In addition, the aerodynamic torque and effective wind speed are estimated online to get the gain-scheduling variable for implementing the controller. The potential of this method is verified through simulation with the help of MATLAB/Simulink and GH Bladed. The performance and mechanical load when using LQR are also compared with those obtained when using a PI controller.

A Gain-Scheduled Autopilot Design for a Bank-To-Turn Missile Using LMI Optimization and Linear Interpolation

  • Shin, Myoung-Ho;Chung, Myung-Jin;Lee, Chiul-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.48.3-48
    • /
    • 2001
  • A gain-scheduled autopilot design for a bank-to-turn (BTT) missile is developed by using the Linear Matrix Inequality (LMI) optimization technique and a state-space lineal interpolation method. The missile dynamics are brought to a quasilinear parameter varying (quasi-LPV) form. Robust linear control design method is used to obtain state feedback controllers for the LPV systems with exogenous disturbances at the frozen values of the scheduling parameters. Two gam-scheduled controllers for the pitch axis and the yaw/roll axis are constructed by linearly interpolating the robust state-feedback gains. The designed controller is applied to a nonlinear six-degree-of-freedom (6-DOF) simulations.

  • PDF

Attitude Controller Design and Flight Test of KSR-III Sounding Rocket (KSR-III 과학로켓의 자세제어기 설계와 비행시험)

  • Roh, Woong-Rae;Cho, Hyun-Chul;Ahn, Jae-Myung;Choi, Hyung-Don
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.3
    • /
    • pp.88-94
    • /
    • 2004
  • The KSR-III rocket is a liquid propellant sounding rocket and thrust vector control actuators and cold gas thrusters are used to control pitch and yaw, roll attitude respectively during thrusting phase. In this paper, the structure of designed attitude controller and gain scheduling, results of stability analysis for KSR-III rocket are presented. The attitude controller is implemented with flight software in the domestically developed INS and successfully performed its function in the flight test. The flight data are coincident with simulation results.