• 제목/요약/키워드: Piping system

Search Result 777, Processing Time 0.031 seconds

Considerations of Stress Assessment Methodology for BOP Pipings of PGSFR (PGSFR BOP계통 배관 응력평가 적용방안 고찰)

  • Oh, Young Jin;Huh, Nam Su;Chang, Young Sik
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.12 no.1
    • /
    • pp.101-106
    • /
    • 2016
  • NSSS (Nuclear Steam Supply System) and BOP (Balance of Plant) design works for PGSFR (Prototype Gen-IV Sodium Fast Reactor) have been conducted in Korea. NSSS major components, e.g. reactor vessel, steam generator and secondary sodium main pipes, are designed according to the rule of ASME boiler and pressure vessel code division 5, in which DBA (Design by Analysis) methods are used in the stress assessments. However, there is little discussions about detail rules for BOP piping design. In this paper, the detail methodologies of BOP piping stress assessment are discussed including safety systems and non-safety system pipings. It is confirmed that KEPIC MGE(ASME B31.1) and ASME BPV code division 5 HCB-3600 can be used in stress assessments of non-safety pipes and class B pipes, respectively. However, class A pipe design according to ASME BPV code division 5 HBB-3200 has many difficulties applying to PGSFR BOP design. Finally, future development plan for class A pipe stress assessment method is proposed in this paper.

A Study on the Design of Liquid Flow Control Valves for the Pants and Ships(II) (플랜트 및 선박의 액체용 우량제어밸브 설계에 관한 연구(II))

  • 최순호;배윤영;김태한;한기남;주경인
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.19 no.2
    • /
    • pp.1-9
    • /
    • 1995
  • The processing paper has devoted to the theory of the flow equations, the basic derivative procedure, the meaning of a valve flow coefficient $C_v$, the valve Reynolds R$R_{ev}$ and its application for liquid control valves, which applicable under the condition of a non-critical flow and the case of piping geometry factor $F_p$=1.0. However there is no information on the effects of fittings, a critical flow and the flow resistance coefficient of a valve equivalent to that of pipe which is conveniently used in the piping design. Since the piping systems of plants or ships generally contain various fittings such as expanders and reducers due to different size between pipes and valves and there may occur a critical flow, that a mass flowrate is maintained to be constant, due to the pressure drop in a piping when a liquid is initially maintainder ar a saturated temperature or at nearby corresponding to upstream pressure, system designer should have a knowledge of the effect to flow due to fittings and the critical flow phenomenon of a liquid. This study is performed to inform system designers with the critical flow phenomenon of a liquid, a valve resistance coefficient, a valve geometry factor and their applications.

  • PDF

Wall Thinning Analyses for Secondary Side Piping of Domestic NPPs Using CHECWORKS Code (CHECWORKS 코드를 이용한 국내 원전 2차계통 배관감육 해석)

  • Hwang, K.M.;Jin, T.E.;Lee, S.H.;Kim, W.S.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.807-812
    • /
    • 2001
  • This paper represents the wall thinning analysis results for secondary side piping of two types of domestic nuclear power plants based on the DB establishment and F AC analysis study for NPP secondary system piping. CHECWORKS code utilized in this study has been applied world widely to wall thinning analyses for secondary side piping and its reliability has also been proved. The predicted wear rates for several piping systems of a pressurized water reactor NPP are compared with those of a pressurized heavy water reactor NPP and with the measured wear rates. On the basis of comparison results of the predicted and measured wear rates, the analysis results can be effectively applied to the development of a standard thinned pipe management program targeted all domestic nuclear power plants.

  • PDF

Development of a Simplified Design Method for LBB Application to Nuclear Piping (원전 배관의 LBB 개념 적용을 위한 간략 설계기법 개발)

  • 허남수;이철형;김영진;석창성;표창률
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.2
    • /
    • pp.32-41
    • /
    • 1999
  • If the Leak-Before-Break (LBB) concept is applicable to the nuclear piping design, it is not necessary to consider the dynamic effect due to pipe rupture. Therefore, the construction cost can be significantly reduced by eliminating unnecessary pipe whip restraints and jet impingement devices. The objective of this paper is to develop the Piping Evaluation Diagram (PED) for efficient application of LBB concept to piping system at an initial piping design stage. For this purpose, the 3-D finite element analyses were performed to evaluate the crack stability. And the stress-strain curve based on the pipe material tests were used to calculate the detectable leakage crack length. Finally, the present PED which was composed as a function of NOP load and allowable SSE load, was developed for an application of LBB concept to the safety injection and shutdown cooling line in Korean Next Generation Reactor (KNGR).

  • PDF

Analysis on Heat Supply Piping Network for Apartment House (아파트의 온수공급배관망해석)

  • 박윤철;황광일
    • Journal of the Korean housing association
    • /
    • v.13 no.6
    • /
    • pp.89-99
    • /
    • 2002
  • The purpose of this research is to analyze the characteristics of flow rate distribution in hot-water piping networks in the apartment building. A 14-story apartment house was selected as a sample building and analyzed numerically by Hardy-Cross method. Two different piping networks, one has three vertical zones and the other of a single zone with automatic balancing valves, were compared. Some of research results are as follows; As the temperature of supply hot-water increases, the flow rate of it does by buoyancy effect, but this effect is not found in the piping network with automatic balancing valves. Non-uniformity in hot-water flow distributions to all stories in the piping system of single vertical zone can be completely reformed by the installation of either manually operated or automatic balancing valves in every story.

Effect of MDOF structures' optimal dampers on seismic fragility of piping

  • Jung, Woo Young;Ju, Bu Seog
    • Earthquakes and Structures
    • /
    • v.9 no.3
    • /
    • pp.563-576
    • /
    • 2015
  • Over the past few decades, seismic retrofitting of structural systems has been significantly improved by the adoption of various methods such as FRP composite wraps, base isolation systems, and passive/active damper control systems. In parallel with this trend, probabilistic risk assessment (PRA) for structural and nonstructural components has become necessary for risk mitigation and the achievement of reliable designs in performance-based earthquake engineering. The primary objective of the present study was to evaluate the effect on piping fragility at T-joints due to seismic retrofitting of structural systems with passive energy-dissipation devices (i.e., linear viscous dampers). Three mid-rise building types were considered: without any seismic retrofitting; with distributed damper systems; with optimal placement of dampers. The results showed that the probability of piping system failure was considerably reduced in a Multi Degree of Freedom (MDOF) building retrofitted with optimal passive damper systems at lower floor levels. This effect of damper systems on piping fragility became insignificant as the floor level increased.

A Numerical Analysis on Thermal Stratification Phenomenon by In-Leakage in a Branch Piping

  • Park Jong-Il
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.12
    • /
    • pp.2245-2252
    • /
    • 2005
  • Thermal stratification in the branch piping of power plants can be generated by turbulent penetration or by valve leakage. In this study, a numerical analysis was performed to estimate the thermal stratification phenomenon by in-leakage in the SIS branch piping of nuclear power plant. Leakage rate, leakage area and leakage location were selected as evaluation factors to investigate the thermal stratification effect. As a result of the thermal stratification effect according to leakage rate, the maximum temperature difference between top and bottom of the horizontal piping was evaluated to be about 185K when the valve leakage rate was about 10 times as much as the allowed leakage rate. For leakage rate more than 10 times the allowed leakage rate, the temperature difference was rapidly decreased due to the increased mixing effect. In the result according to leakage area, the magnitude of temperature difference was shown in order of $3\%,\;1\%\;and\;5\%$ leakage area of the total disk area. In the thermal stratification effect, according to the leakage location, temperature difference when leakage occurred in the lower disk was considerably higher than that of when leakage occurred in the upper disk.

Out-of-Plane Vibrations of Angled Pipes Conveying Fluid (내부유동을 포함한 굴곡된 파이프의 외평면 진동해석)

  • Pak, chol-Hui;Hong, Sung-Chul;Kim, Tae-Ryong
    • Nuclear Engineering and Technology
    • /
    • v.23 no.3
    • /
    • pp.306-315
    • /
    • 1991
  • This paper considered the out-of-plane motion of the piping system conveying fluid through the elbow connecting two straight pipes. The extended Hamilton's principle is used to derive equations of motion. It is found that dynamic instability does not exist for the clamped-clamped, clamped-pinned and pinned-pinned boundary conditions. The frequency equations for each boundary conditions are solved numerically to find the natural frequencies. The effects of fluid velocity and Coriolis force on the natural frequencies of piping system are investigated. It is shown that buckling-type instability may occur at certain critical velocities and fluid pressures. Equivalent critical velocity, which is defined as a function of flow velocity and fluid pressure, are calculated for various boundary conditions.

  • PDF

A Study on the Application of Phased Array Ultrasonic Testing to Main Steam Line in Nuclear Power Plants (원전 주증기배관 웰더렛 용접부 위상배열초음파검사 적용연구)

  • Lee, Seung-Pyo;Kim, Jin-Hoi
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.7 no.3
    • /
    • pp.40-47
    • /
    • 2011
  • KSNPs(Korea Standard Nuclear Power Plant) have been applied the break exclusion criteria to the high energy lines passing through containment penetration area to ensure that piping failures would not cause the loss of containment isolation function, and to reduce the resulting dynamic effects. Systems with the criteria are the Main Steam system, Feed Water system, Steam Generator Blowdown system, and Chemical & Volume Control system. In accordance with FSAR(Final Safety Analysis Report), a 100% volumetric examination by augmented in-service inspection of all pipe welds appled the break exclusion criteria is required for the break exclusion application piping. However, it is difficult to fully satisfy the requirements of inspection because 12", 8" and 6" weldolet weldments of Main Steam pipe line have complex structural shapes. To resolve the difficulty on the application of conventional UT(Ultrasonic Testing) technique, realistic mock-ups and UT calibration blocks were made. Simulations of conventional UT were performed utilizing CIVA, a commercial NDE(Nondestructive Examination) simulation software. Phased array UT experiments were performed through mock-up including artificial notch type flaws. A phased array UT technique is finally developed to improve the reliability of ultrasonic test at main steam line pipe to 12", 8" and 6" branch connection weld.

Monitoring and Characterization of Bacterial Contamination in a High-Purity Water System Used for Semiconductor Manufacturing

  • Kim, In -Seop;Lee, Geon-Hyoung;Lee, Kye-Joon
    • Journal of Microbiology
    • /
    • v.38 no.2
    • /
    • pp.99-104
    • /
    • 2000
  • Hydrogen peroxide has been used in cleaning the piping of an advanced high-purity water system that supplies ultra-high purity water (UHPW) for 16 megabyte DRAM semiconductor manufacturing. The level of hydrogen peroxide-resistant bacteria in UHPW water was monitored prior to and after disinfecting the piping with hydrogen peroxide. Most of the bacteria isolated after hydrogen peroxide disinfection were highly resistant to hydrogen peroxide. However, the percentage of resistant bacteria decreased with time. The hydrogen peroxide-resistant bacteria were identified as Micrococcus luteus, Bacillus cereus, Alcaligenes latus, Xanthomonas sp. and Flavobacterium indologenes. The susceptibility of the bacteria to hydrogen peroxide was tested as either planktonic cells or attached cells on glass. Attached bacteria as the biofilm on glass exhibited increased hydrogen peroxide resistnace, with the resistance increasing with respect to the age of the biofilm regrowth on piping after hydrogen peroxide treatment. In order to optimize the cleaning strategy for piping of the high-purity water system, the disinfecting effect of hydrogen preoxide and peracetic acid on the bacteria was evaluated. The combined use of hydrogen peroxide and peracetic acid was very effective in killing attached bacteria as well as planktonic bacteria.

  • PDF