• 제목/요약/키워드: Piping penetration

검색결과 41건 처리시간 0.02초

국내 원자로 상부헤드관통관 기량검증 기술개발 (Development of Reactor Vessel Head Penetration Performance Demonstration System in Korea)

  • 김용식;윤병식;양승한
    • 한국압력기기공학회 논문집
    • /
    • 제10권1호
    • /
    • pp.44-50
    • /
    • 2014
  • There were many flaw issues of reactor vessel head penetration in USA fleets. USNRC issued 10CFR50.55a to implement reactor vessel head penetration ultrasonic examination performance demonstration(PD) in US for enhancement of inspection reliability. After September 2009, all US utilities inspected their RVHP with PD qualified system. Korea Hydro and Nuclear Power Company(KHNP) have developed reactor vessel head penetration performance demonstration system for ultrasonic test to apply for pressurized light-water reactor power plants in accordance with 10CFR50.55a since September 2011. RVHP configuration surveying and analysis, code requirement analysis, and performance demonstration specimen design were performed up to this day. Fingerprinting of manufactured specimen, development of test data management program, development of operation procedure, input of flawed data, and development of final report will be performed for the next step. This paper describes the development status of the performance demonstration system for reactor vessel head penetration ultrasonic examination in Korea.

원전 안전주입 배관에서의 In-Leakage 에 의한 열성층 현상에 관한 연구 (A Study on Thermal Stratification Phenomenon due to In-Leakage in the Safety Injection Piping of Nuclear Power Plant)

  • 김광추;박만홍;염학기;김태룡;이선기
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.1633-1638
    • /
    • 2003
  • In case that in-leakage through the valve disk occurs, a numerical study is performed to estimate on thermal stratification phenomenon in the Safety Injection piping connected with the Reactor Coolant System piping of Nuclear Power Plant. As the leakage flow rate increases, the temperature difference between top and bottom of horizontal piping has the inflection point. In the connection point of valve and piping, the maximum temperature difference between top and bottom was 185K and occurred in the condition of 10 times of standard leakage flow rate. In the connection point of elbow and horizontal piping, the maximum temperature difference was 145K and occurred in the condition of 15 times of standard leakage flow rate. In the vertical piping of Safety Injection piping, the near of connection point between elbow and vertical piping showed the outstanding thermal stratification phenomenon in comparison with another region because of turbulent penetration from Reactor Coolant System piping. In order to prevent damage of piping due to the thermal stratification when in-leakage through the valve disk occurs, the connection points between valve and piping, and the connection points between elbow and piping need to be inspected continually.

  • PDF

A Numerical Analysis on Thermal Stratification Phenomenon by In-Leakage in a Branch Piping

  • Park Jong-Il
    • Journal of Mechanical Science and Technology
    • /
    • 제19권12호
    • /
    • pp.2245-2252
    • /
    • 2005
  • Thermal stratification in the branch piping of power plants can be generated by turbulent penetration or by valve leakage. In this study, a numerical analysis was performed to estimate the thermal stratification phenomenon by in-leakage in the SIS branch piping of nuclear power plant. Leakage rate, leakage area and leakage location were selected as evaluation factors to investigate the thermal stratification effect. As a result of the thermal stratification effect according to leakage rate, the maximum temperature difference between top and bottom of the horizontal piping was evaluated to be about 185K when the valve leakage rate was about 10 times as much as the allowed leakage rate. For leakage rate more than 10 times the allowed leakage rate, the temperature difference was rapidly decreased due to the increased mixing effect. In the result according to leakage area, the magnitude of temperature difference was shown in order of $3\%,\;1\%\;and\;5\%$ leakage area of the total disk area. In the thermal stratification effect, according to the leakage location, temperature difference when leakage occurred in the lower disk was considerably higher than that of when leakage occurred in the upper disk.

국내원전 배관계통 열성층 연구개발 현황 (Status of Thermal Stratification Research on Piping System in Korea Nuclear Power Plant)

  • 이선기
    • 한국압력기기공학회 논문집
    • /
    • 제12권2호
    • /
    • pp.25-33
    • /
    • 2016
  • The thermal stratification phenomenon in the nuclear power plant can cause abnormal deformation of the piping, contact with the support, damage to the support system. Repetition of the thermal stratification phenomenon or variation of the thermal boundary layer can cause thermal fatigue. Thermal stratification phenomenon in nuclear power plants is still an ongoing issue and active research has been carried out. In this paper, the current situation in Korean nuclear power plants is described, followed by the status of research and the future problems on the thermal stratification phenomenon in Korea.

수치해석을 이용한 하천제방의 건전도 평가 (River Embankment Integrity Evaluation using Numerical Analysis)

  • 변요셉;정혁상;김진만;최봉혁;김경민;천병식
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 세계 도시지반공학 심포지엄
    • /
    • pp.524-528
    • /
    • 2009
  • An influence factors for soundness evaluation of river levee include resistibility and embankment for piping of ground consisting embankment in case piping, permeability coefficient of ground, height of embankment, the width of crest, material characteristics of embankment and foundation ground, shape of embankment slope, an influence for penetration of rainfall or river water in case slope stability. In this study, it was operated a feasibility investigation of existing design result, stability evaluation for permeability coefficient use and permeability coefficient change of foundation ground to investigate an influence in line with permeability coefficient change for result of river levee penetration analysis. The evaluation results of influence factors, the permeability coefficient used in design and it was evaluated influence in safety factor of piping. After the evaluation of influence factors, the permeability coefficient used in the design appears with the fact that differs in a design report about same soil, Accordingly, the stability investigation of embankment by application of literature data can affect stability evaluation results by change factors like a permeability coefficient, void ratio. It should be certainly used material properties by a test in soundness evaluation of river levee.

  • PDF

사각 T분기관내 누설유동의 난류침투에 의한 열성층 발생에 관한 수시해석적 연구 (Numerical Analysis of Thermal Stratification due to Turbulence Penetration into Leaking Flow in a T Branch)

  • 홍석우;최영돈;박민수;서정희
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.729-734
    • /
    • 2001
  • Thermal stratification due to turbulence penetration and in-leakage of valve cause the large thermal stress, which lead to fatigue crack of the piping system of nuclear power plant. So it is needed that numerical and experimental study for the phenomenon is conducted because there have not yet been sufficient study for the relationship between turbulence penetration and thermal stratification. Therefore numerical analysis is done here and respected to give a fundamental method of the approach to the phenomenon.

  • PDF

Alloy 600 노즐관통부의 이종금속용접 잔류응력에 따른 응력부식균열 거동 분석 (Analysis of SCC Behavior of Alloy 600 Nozzle Penetration According to Residual Stress Induced by Dissimilar Metal Welding)

  • 김성우;김홍표;김동진;정재욱;장윤석
    • 한국압력기기공학회 논문집
    • /
    • 제6권2호
    • /
    • pp.34-41
    • /
    • 2010
  • This work is concerned with the analysis of stress corrosion cracking(SCC) behavior of Alloy 600 nozzle penetration mock-up according to a residual stress induced by a dissimilar metal welding(DMW) in a nuclear reactor pressure vessel. The effects of the dimension and materials of the nozzle penetration on the deformation and the residual stress induced by DMW were investigated using a finite element analysis(FEA). The inner diameter(ID) change of the nozzle by DMW and its dependance on the design variables, calculated by FEA, were well consistent with those measured from the mock-up. Accelerated SCC tests were performed for three mock-ups with different wall thicknesses in a highly acidic solution to investigate mainly the effect of the residual stress on the SCC behavior of Alloy 600 nozzle. From a destructive examination of the mock-up after the tests, the SCC behavior of the nozzle was fairly related with the residual stress induced by DMW : axial cracks were found in the ID surface of the nozzle within the J-weld region where the highest tensile hoop stress was predicted by FEA, while circumferential cracks were observed beyond both J-weld root and toe where the highest tensile axial stress was expected.

  • PDF

원전 주증기배관 웰더렛 용접부 위상배열초음파검사 적용연구 (A Study on the Application of Phased Array Ultrasonic Testing to Main Steam Line in Nuclear Power Plants)

  • 이승표;김진회
    • 한국압력기기공학회 논문집
    • /
    • 제7권3호
    • /
    • pp.40-47
    • /
    • 2011
  • KSNPs(Korea Standard Nuclear Power Plant) have been applied the break exclusion criteria to the high energy lines passing through containment penetration area to ensure that piping failures would not cause the loss of containment isolation function, and to reduce the resulting dynamic effects. Systems with the criteria are the Main Steam system, Feed Water system, Steam Generator Blowdown system, and Chemical & Volume Control system. In accordance with FSAR(Final Safety Analysis Report), a 100% volumetric examination by augmented in-service inspection of all pipe welds appled the break exclusion criteria is required for the break exclusion application piping. However, it is difficult to fully satisfy the requirements of inspection because 12", 8" and 6" weldolet weldments of Main Steam pipe line have complex structural shapes. To resolve the difficulty on the application of conventional UT(Ultrasonic Testing) technique, realistic mock-ups and UT calibration blocks were made. Simulations of conventional UT were performed utilizing CIVA, a commercial NDE(Nondestructive Examination) simulation software. Phased array UT experiments were performed through mock-up including artificial notch type flaws. A phased array UT technique is finally developed to improve the reliability of ultrasonic test at main steam line pipe to 12", 8" and 6" branch connection weld.

원자로 상부헤드 관통노즐 균열에 대한 원인분석 및 건전성 평가 (Root Cause Analysis and Structural Integrity Evaluation for a Crack in a Reactor Vessel Upper Head Penetration Nozzle)

  • 이경수;이성호;이정석;이재곤;이승건
    • 한국압력기기공학회 논문집
    • /
    • 제9권1호
    • /
    • pp.56-61
    • /
    • 2013
  • This paper presents the results of integrity assessment for the cracks happened in reactor vessel upper head penetration nozzles. The crack morphology for a boat sample from crack area was analyzed through microscope. The stress condition including weld residual stress around crack was analyzed using finite element analysis. From the results of crack morphology and stress condition, the crack was concluded as primary water stress corrosion cracking. The integrity of the cracked nozzle was assessed by the methodology provided in ASME Section XI. According to the assessment results, the remaining life of the cracked nozzle was 1.43 yrs. and the plant decided to repair it.

하천제방의 건전도 평가를 위한 수치해석적 연구 (Numerical Analysis for Integrity Evaluation of River Bank)

  • 장혁상;변오셉;천병식;최봉혁;김진만
    • 한국지반환경공학회 논문집
    • /
    • 제11권11호
    • /
    • pp.19-26
    • /
    • 2010
  • 하천제방 건전도 평가에 대한 영향인자는 누수의 경우 제체, 기초를 구성하는 지반의 투수계수가 있으며, 제방의 높이, 둑마루 폭 등 기하학적 요인이 있고, 비탈면 안정성의 경우 제체 및 기초 지반의 재료적 특성, 제체 비탈면의 형상, 강우나 하천수의 침투에 따른 영향 등이 있다. 본 연구에서는 하천제방 침투해석에 중요한 투수계수 변화에 따른 영향 검토를 위하여 기존 설계결과 타당성 검토, 문헌자료 투수계수 사용에 따른 안정성 평가, 기초지반 투수계수변화에 따른 안정성 검토를 수행하였다. 영향인자 평가 결과, 설계 시 사용되는 투수계수는 동일한 토질에 대해서도 설계문헌에 따라 상이한 것으로 나타났으며, 검토 결과 파이핑 안전율에 큰 영향을 미치는 것으로 평가되었다.