• Title/Summary/Keyword: Piping Failure

Search Result 177, Processing Time 0.03 seconds

Piping Failure Analysis In Domestic Nuclear Safety Piping System (국내 안전등급 배관에 대한 손상사례 분석)

  • Choi, Sun-Yeong;Choi, Young-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.617-621
    • /
    • 2003
  • The purpose of this paper is to analyze piping failure trend of safety pipings In domestic nuclear power plants. First, database for the piping failure was constructed with 105 data fields. The database includes plant population data, event data, and service history data. 7 kinds of piping failures in domestic NPPs were investigated. Among the 7 cases, detailed root causes were investigated for 3 cases. The first one is pipe wall thinning in main feedwater pipings of Westinghouse 3 loop type plants. The root cause of the wall thinning was flow accelerated corrosion near welding area. The next one is leak event in chemical and volume control system(CVCS) due to vibration. Some cracks occurred in socket welding area. The events showed that the integrity or socket weld is very vulnerable to vibration. The last one is also a leak event in primary sampling line in Korean standard reactor due to thermal fatigue. Although the structural integrity was not maintained by the events, there was no effect on nuclear safety in the above 3 piping failure eases.

  • PDF

Seismic fragility evaluation of the base-isolated nuclear power plant piping system using the failure criterion based on stress-strain

  • Kim, Sung-Wan;Jeon, Bub-Gyu;Hahm, Dae-Gi;Kim, Min-Kyu
    • Nuclear Engineering and Technology
    • /
    • v.51 no.2
    • /
    • pp.561-572
    • /
    • 2019
  • In the design criterion for the nuclear power plant piping system, the limit state of the piping against an earthquake is assumed to be plastic collapse. The failure of a common piping system, however, means the leakage caused by the cracks. Therefore, for the seismic fragility analysis of a nuclear power plant, a method capable of quantitatively expressing the failure of an actual piping system is required. In this study, it was conducted to propose a quantitative failure criterion for piping system, which is required for the seismic fragility analysis of nuclear power plants against critical accidents. The in-plane cyclic loading test was conducted to propose a quantitative failure criterion for steel pipe elbows in the nuclear power plant piping system. Nonlinear analysis was conducted using a finite element model, and the results were compared with the test results to verify the effectiveness of the finite element model. The collapse load point derived from the experiment and analysis results and the damage index based on the stress-strain relationship were defined as failure criteria, and seismic fragility analysis was conducted for the piping system of the BNL (Brookhaven National Laboratory) - NRC (Nuclear Regulatory Commission) benchmark model.

Evaluation of Piping Failure Probability of Reactor Coolant System in Kori Unit 1 Considering Stress Corrosion Cracking (응력부식균열을 고려한 고리 1호기 원자로냉각재계통의 배관 파손확률 평가)

  • Park, Jeong Soon;Choi, Young Hwan;Park, Jae Hak
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.6 no.1
    • /
    • pp.43-49
    • /
    • 2010
  • The piping failure probability of the reactor coolant system in Kori unit 1 was evaluated considering stress corrosion cracking. The P-PIE program (Probabilistic Piping Integrity Evaluation Program) developed in this study was used in the analysis. The effect of some variables such as oxygen concentration during start up and steady state operation, and operating temperature, which are related with stress corrosion cracking, on the piping failure probabilities was investigated. The effects of leak detection capability, the size of big leak, piping loops, and reactor types on the piping failure probability were also investigated. The results show that (1) LOCA (loss of coolant accident) probability of Kori unit 1 is extremely low, (2) leak probability is sensitive to oxygen concentration during steady state operation and operating temperature, while not sensitive to the oxygen concentration during start up, and (3) the piping thickness and operating temperature play important roles in the leak probabilities of the cold leg in 4 reactor types having same inner diameter.

  • PDF

Analysis of River Levee Failure Mechanism by Piping and Remediation Method Evaluation (파이핑에 의한 하천제방 붕괴 메카니즘 분석 및 대책공법 평가)

  • Kim, Jin-Man;Moon, In-Jong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.600-608
    • /
    • 2017
  • The presence of piping in a levee body allows water seepage to occur by producing a large cavity or water tunnel within it, ultimately resulting in the failure of the river levee and differential settlement. In order to properly cope with river levee failure due to piping and establish a proper remediation method for this problem, it is necessary to analyze the failure mechanism of the river levee due to piping. Therefore, this study analyzed the shape and mechanism of river levee failure due to piping through small-scale and large-scale models and evaluated the seepage pressure distribution characteristics in the hydraulic well, which has been suggested as a remediation method for piping. According to the results of this study, as the safety factor for the piping in the river levee decreased, the river levee failure shape was more clearly shown through the small-scale model test. In the large-scale model test, the type of local damage to the levee due to the piping was identified and the evaluation showed that the hydraulic well had the largest effect on the inhibition of piping below the center of the well. A follow-up study is needed to confirm the reliability of the results. However, it is thought that this study can be utilized as the baseline data for research into the piping-induced river levee failure mechanism and for the preparation of a remediation method.

A Review of the Progress with Statistical Models of Passive Component Reliability

  • Lydell, Bengt O.Y.
    • Nuclear Engineering and Technology
    • /
    • v.49 no.2
    • /
    • pp.349-359
    • /
    • 2017
  • During the past 25 years, in the context of probabilistic safety assessment, efforts have been directed towards establishment of comprehensive pipe failure event databases as a foundation for exploratory research to better understand how to effectively organize a piping reliability analysis task. The focused pipe failure database development efforts have progressed well with the development of piping reliability analysis frameworks that utilize the full body of service experience data, fracture mechanics analysis insights, expert elicitation results that are rolled into an integrated and risk-informed approach to the estimation of piping reliability parameters with full recognition of the embedded uncertainties. The discussion in this paper builds on a major collection of operating experience data (more than 11,000 pipe failure records) and the associated lessons learned from data analysis and data applications spanning three decades. The piping reliability analysis lessons learned have been obtained from the derivation of pipe leak and rupture frequencies for corrosion resistant piping in a raw water environment, loss-of-coolant-accident frequencies given degradation mitigation, high-energy pipe break analysis, moderate-energy pipe break analysis, and numerous plant-specific applications of a statistical piping reliability model framework. Conclusions are presented regarding the feasibility of determining and incorporating aging effects into probabilistic safety assessment models.

Cause Analysis of Dam Body piping Failure -Centering on the Example of Seungam Reservoir Failure- (제당 PIPING 결궤 원인분석 - 성암제 붕괴 중심으로 -)

  • Lee, In-Hyung
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.344-350
    • /
    • 2001
  • Piping is a phenomenon where seeping water progressively erodes or washes away soil particles, leaving large voids (Pipes led to the development of channels) in the soil. Piping failure caused by heave can be expected to occur on the downstream side of a hydraulic structure such as fill dams when the uplift forces of seepage exceed the downward forces due to the submerged weight of the soil. The way to prevent erosion and piping and to reduce damaging uplift pressures is to use a protective filter or to construct cutoff wall/imperious blanket. Therefore, all the hydraulic structures faced/with soil materials should be taken the safety against piping into consideration.

  • PDF

Piping Failure Frequency Analysis for the Main Feedwater System in Domestic Nuclear Power Plants

  • Choi Sun Yeong;Choi Young Hwan
    • Nuclear Engineering and Technology
    • /
    • v.36 no.1
    • /
    • pp.112-120
    • /
    • 2004
  • The purpose of this paper is to analyze the piping failure frequency for the main feedwater system in domestic nuclear power plants(NPPs) for the application to an in-service inspection(ISI), leak before break(LBB) concept, aging management program(AMP), and probabilistic safety analysis(PSA). First, a database was developed for piping failure events in domestic NPPs, and 23 domestic piping failure events were collected. Among the 23 events, 12 locations of wall thinning due to flow accelerated corrosion(FAC) were identified in the main feedwater system in 4 domestic WH 3-loop NPPs. Two types of the piping failure frequency such as the damage frequency and rupture frequency were considered in this study. The damage frequency was calculated from both the plant population data and damage(s) including crack, wall thinning, leak, and/or rupture, while the rupture frequency was estimated by using both the well-known Jeffreys method and a new method considering the degradation due to FAC. The results showed that the damage frequencies based on the number of the base metal piping susceptible to FAC ranged from $1.26{\times}10^{-3}/cr.yr\;to\;3.91{\times}10^{-3}/cr.yr$ for the main feedwater system of domestic WH 3-loop NPPs. The rupture frequencies obtained from the Jeffreys method for the main feedwater system were $1.01{\times}10^{-2}/cr.yr\;and\;4.54{\times}10^{-3}/cr.yr$ for the domestic WH 3-loop NPPs and all the other domestic PWR NPPs respectively, while those from the new method considering the degradation were higher than those from the Jeffreys method by about an order of one.

An Experimental Study on Piping Failure of Earth Embankment (토질제체의 Piping 파괴에 대한 실험적 연구)

  • Jeong, Hyeong-Sik;Ryu, Jae-Il;An, Sang-Ro
    • Geotechnical Engineering
    • /
    • v.5 no.4
    • /
    • pp.17-26
    • /
    • 1989
  • The creep ratio, which has been applied as a measure to prevent piping failure in designing embankments, has been originally proposed for the protection of masonry or concrete dam from piping along the boundary surface between the foundation soil and the bottom of the structure. In this study, it has been investigated whether this creep ratio could be applied for the earth embankment through the model test and we reevaluated the required creep ratio in the present design criteria. Based on this research, it was concluded that a piping failure would always occur within the embankment body and not through the boundary surface between the embankment and foundation. Therefore it could be said that the present design criteria are illogical to determine the design creep ratio according to less permeable soil no matter whether the soil forms embankment or foundation.

  • PDF

Examination on High Vibration and Branch Vent Pipe's Failure of Complex Piping System Suppling Condensate-Water in Power Site (발전소 복수 공급 배관계의 고진동과 분기 배기배관의 절손 규명)

  • Kim, Yeon-Whan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2010.10a
    • /
    • pp.380-384
    • /
    • 2010
  • A disturbance flow at piping bands and discontinuous regions such as a valve, a header has a intense broadband internal pressure field and a sound field which are propagated through the piping system The fields becomes the source of a vibration of this piping system. Intense broadband disturbance flow at a discontinuous region such as elbows, valves or headers generates an acoustical pulsation. The pulsation becomes the source of structural vibration at the piping system. If it coincides with the natural frequency of the pipe system, excessive vibration results. High-level vibration due to the pressure pulsation affects the reliability of the plant piping system. This paper discusses the high vibration and the branch vent pipe's failure of condensate-water supply piping system due to the effect of acoustical pulsations by flow turbulence from the flow control valves of globe type in a power site.

  • PDF

Effects of Hardening Models on Cyclic Deformation Behavior of Tensile Specimen and Nuclear Piping System (인장 시편 및 원자력 배관계의 반복 변형거동에 미치는 경화 모델의 영향)

  • Jeon, Da-Som;Kang, Ju-Yeon;Huh, Nam-Su;Kim, Jong-Sung;Kim, Yun-Jae
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.13 no.2
    • /
    • pp.67-74
    • /
    • 2017
  • Recently there have been many concerns on structural integrity of nuclear piping under seismic loadings. In terms of failure of nuclear piping due to seismic loadings, an important failure mechanism is low cycle fatigue with large cyclic displacements. To investigate the effects of seismic loading on low cycle fatigue behavior of nuclear piping, the cyclic behavior of materials and nuclear piping needs to be accurately estimated. In this paper, the non-linear finite element (FE) analyses have been carried out to evaluate the effects of three different cyclic hardening models on cyclic behavior of materials and nuclear piping, such as isotropic hardening, kinematic hardening and combined hardening.