• Title/Summary/Keyword: Pipelines

Search Result 831, Processing Time 0.027 seconds

Body Motion Retargeting to Rig-space (리깅 공간으로의 몸체 동작 리타겟팅)

  • Song, Jaewon;Noh, Junyong
    • Journal of the Korea Computer Graphics Society
    • /
    • v.20 no.3
    • /
    • pp.9-17
    • /
    • 2014
  • This paper presents a method to retarget a source motion to the rig-space parameter for a target character that can be equipped with a complex rig structure as used in traditional animation pipelines. Our solution allows the animators to edit the retargeted motion easily and intuitively as they can work with the same rig parameters that have been used for keyframe animation. To acheive this, we analyze the correspondence between the source motion space and the target rig-space, followed by performing non-linear optimization for the motion retargeting to target rig-space. We observed the general workflow practiced by animators and apply this process to the optimization step.

Effect of Surrounding Soil Properties on the Attenuation of the First Guided Longitudinal Wave Mode Propagating in Water-filled, Buried Pipes (주변 흙의 특성이 물이 찬 매립된 배관에서 전파되는 기본 유도 종파 모드 감쇠에 미치는 영향)

  • Lee, Ju-Won;Na, Won-Bae;Shin, Sung-Woo;Kim, Jae-Min
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.4
    • /
    • pp.32-37
    • /
    • 2010
  • This study presents the attenuation characteristics of the first guided longitudinal wave mode propagating in water-filled, buried steel pipes in order to investigate the effects of soil saturation and compaction on the attenuation patterns. For numerical calculation of attenuation, 10 different combinations of S-wave velocity, P-wave velocity, and soil densities were considered. From the attenuation dispersion curves, which were obtained using Disperse software, we determined that the attenuation decreases as saturation increases, whereas it increases as compaction increases. Over the frequency range from 0.2 to 0.4 MHz, the first longitudinal wave mode has attenuations that are relatively lower than for other ranges, is faster than the first flexural wave mode, and is sensitive to defects aligned in the axial direction. Hence, the first longitudinal wave mode over the mentioned frequency range would be the proper choice for long-range buried pipelines that transport water.

Phylogenomics and its Growing Impact on Algal Phylogeny and Evolution

  • Adrian , Reyes-Prieto;Yoon, Hwan-Su;Bhattacharya, Debashish
    • ALGAE
    • /
    • v.21 no.1
    • /
    • pp.1-10
    • /
    • 2006
  • Genomic data is accumulating in public database at an unprecedented rate. Although presently dominated by the sequences of metazoan, plant, parasitic, and picoeukaryotic taxa, both expressed sequence tag (EST) and complete genomes of free-living algae are also slowly appearing. This wealth of information offers the opportunity to clarify many long-standing issues in algal and plant evolution such as the contribution of the plastid endosymbiont to nuclear genome evolution using the tools of comparative genomics and multi-gene phylogenetics. A particularly powerful approach for the automated analysis of genome data from multiple taxa is termed phylogenomics. Phylogenomics is the convergence of genomics science (the study of the function and structure of genes and genomes) and molecular phylogenetics (the study of the hierarchical evolutionary relationships among organisms, their genes and genomes). The use of phylogenetics to drive comparative genome analyses has facilitated the reconstruction of the evolutionary history of genes, gene families, and organisms. Here we survey the available genome data, introduce phylogenomic pipelines, and review some initial results of phylogenomic analyses of algal genome data.

Load-Bearing Capacity of Subsea Pipeline with Variation of Sea Water Depth and Buried Depth (수심과 퇴적 깊이 변화에 따른 해저배관의 하중지지능력 평가)

  • Baek, Jong-Hyun;Kim, Young-Pyo;Kim, Woo-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.10
    • /
    • pp.1131-1137
    • /
    • 2012
  • Subsea pipelines have been operated with buried depths of 1.2-4m underneath the seabed to prevent buoyancy and external impacts. Therefore, they have to show resistance to both the soil load and the hydrostatic pressure. In this study, the structural integrity of a subsea pipeline subjected to soil load and hydrostatic pressure was evaluated by using FE analyses. A parametric study showed that the internal pressure increased the plastic collapse depth by increasing the resistance to plastic collapse. The hoop stress increased with an increase in the buried depth for the same water depth; however, the hoop stress decreased with an increase in the water depth for the same buried depth.

Applied Computational Tools for Crop Genome Research

  • Love Christopher G;Batley Jacqueline;Edwards David
    • Journal of Plant Biotechnology
    • /
    • v.5 no.4
    • /
    • pp.193-195
    • /
    • 2003
  • A major goal of agricultural biotechnology is the discovery of genes or genetic loci which are associated with characteristics beneficial to crop production. This knowledge of genetic loci may then be applied to improve crop breeding. Agriculturally important genes may also benefit crop production through transgenic technologies. Recent years have seen an application of high throughput technologies to agricultural biotechnology leading to the production of large amounts of genomic data. The challenge today is the effective structuring of this data to permit researchers to search, filter and importantly, make robust associations within a wide variety of datasets. At the Plant Biotechnology Centre, Primary Industries Research Victoria in Melbourne, Australia, we have developed a series of tools and computational pipelines to assist in the processing and structuring of genomic data to aid its application to agricultural biotechnology resear-ch. These tools include a sequence database, ASTRA, for the processing and annotation of expressed sequence tag data. Tools have also been developed for the discovery of simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) molecular markers from large sequence datasets. Application of these tools to Brassica research has assisted in the production of genetic and comparative physical maps as well as candidate gene discovery for a range of agronomically important traits.

Failure Probability Assessment of an API 5L X52 Gas Pipeline with a Wall-thinned Section

  • Lee Sang-Min;Yun Kang-Ok;Chang Yoon-Suk;Choi Jae-Boong;Kim Young-Jin
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.7 no.3
    • /
    • pp.24-29
    • /
    • 2006
  • Pressurized gas pipelines are subject to harmful effects from both the surrounding environment and the materials passing through them. Reliable assessment procedures, including fracture mechanics analyses, are required to maintain their integrity. Currently, integrity assessments are performed using conventional deterministic approaches, even though there are many uncertainties to hinder rational evaluations. Therefore, in this study, a probabilistic approach was considered for gas pipeline evaluations. The objectives were to estimate the failure probability of a corroded pipeline in the gas and oil industries and to propose limited operating conditions for different types of loadings. To achieve these objectives, a probabilistic assessment program was developed using a reliability index and simulation techniques, and applied to evaluate the failure probabilities of a corroded API-5L-X52 gas pipeline subjected to internal pressures, bending moments, and combined loadings. The results demonstrated the potential of the probabilistic integrity assessment program.

Modeling and Simulation for PIG Flow Control in Natural Gas Pipeline

  • Nguyen, Tan-Tien;Kim, Sang-Bong;Yoo, Hui-Ryong;Park, Yong-Woo
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.8
    • /
    • pp.1165-1173
    • /
    • 2001
  • This paper deals with dynamic analysis of Pipeline Inspection Gauge (PIG) flow control in natural gas pipelines. The dynamic behaviour of PIG depends on the pressure differential generated by injected gas flow behind the tail of the PIG and expelled gas flow in front of its nose. To analyze dynamic behaviour characteristics (e.g. gas flow, the PIG position and velocity) mathematical models are derived. Tow types of nonlinear hyperbolic partial differential equations are developed for unsteady flow analysis of the PIG driving and expelled gas. Also, a non-homogeneous differential equation for dynamic analysis of the PIG is given. The nonlinear equations are solved by method of characteristics (MOC) with a regular rectangular grid under appropriate initial and boundary conditions. Runge-Kutta method is used for solving the steady flow equations to get the initial flow values and for solving the dynamic equation of the PIG. The upstream and downstream regions are divided into a number of elements of equal length. The sampling time and distance are chosen under Courant-Friedrich-Lewy (CFL) restriction. Simulation is performed with a pipeline segment in the Korea gas corporation (KOGAS) low pressure system. Ueijungboo-Sangye line. The simulation results show that the derived mathematical models and the proposed computational scheme are effective for estimating the position and velocity of the PIG with a given operational condition of pipeline.

  • PDF

Investigation on electrochemical performance of Al anode material for marine growth prevention system

  • Kim, Seong-Jong;Jang, Seok-Ki;Han, Min-Su;Lee, Seung-Jun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.8
    • /
    • pp.968-973
    • /
    • 2014
  • Aluminum anode of marine growth prevention system for ship is installed in seachest or sea water strainer. The Al anode is connected to a control panel that feeds a current to the anode. The dissolved ions produced by the anode are transferred in sea water, spreads through the sea water pipe system and creates a protective film in the pipelines. Thereby, corrosion in pipeline system significantly is reduced. In application on condition as a steel ship, the big accident can be caused by the corrosion. Accordingly, in this research, we evaluated influence of applied current and flow velocity on electrochemical characteristics of Al anode for marine growth prevention system (MGPS). Based on the results of the erosion-cavitation experiments, cavitation rate increased greatly until 120 min. of the experimental time and decreased a little at the point of 180 min. where pit grew and merging occurred but showed a tendency of steadily increasing consumption rates. Based on the results of the Tafel analysis, compared to static states, corrosion current densities show a rapidly increasing tendency when flow occurred.

Magnetic Property Effects of the Strip on Transducer Sensitivity in a Magnetostrictive Strip Type Guided Wave Transducer (자왜 스트립 도파변환기에서 스트립의 자기적 특성이 변환기 감도에 미치는 영향)

  • Kim, Sung-Joon;Choi, Myoung-Seon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.2
    • /
    • pp.205-210
    • /
    • 2008
  • Magnetic hysteresis loops of a nickel strip and a Fe-Co alloy strip, which have been used in magnetostrictive strip type guided wave transducers for long range ultrasonic testing of pipelines, were measured and then magnetic property effects of a strip on transducer sensitivity were analyzed. The sensitivity of an optimized Fe-Co strip transducer was superior to that of the nickel strip transducer by a factor of about 30. It was shown that this was mainly attributed to the differences in remanence magnetization and coercivity of the two magnetostrictive materials.

Modeling of the Liquid Rocket Engine Transients (액체로켓엔진 천이작동 예측을 위한 동특성 모델링)

  • Ko, Tae-Ho;Jeong, Yu-Shin;Yoon, Woong-Sup
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.1
    • /
    • pp.45-54
    • /
    • 2011
  • A program aiming at predicting dynamic characteristics of a Liquid Rocket Engine(LRE) was developed and examined to trace entire LRE operation. In the startup period, transient characteristics of the propellant flows were predicted and validated with hydraulic tests data. An arrangement of each component for the pipelines was based on an operating circuit of open cycle LRE. The flow rate ratio for the gas generator and the main chamber was determined to mimic that of real open cycle LRE. Individual component modeling at its transient was completed and was integrated into the system prediction program. Essential parameters of the component dynamic characteristics were examined in an integrated fashion.